留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市排水系统提质增效关键技术研究

徐祖信 张竞艺 徐晋 王思玉 陈宗群 林夷媛 王静怡 屈扬 尹海龙 李怀正 金伟

徐祖信,张竞艺,徐晋,等.城市排水系统提质增效关键技术研究:以马鞍山市为例[J].环境工程技术学报,2022,12(2):348-355 doi: 10.12153/j.issn.1674-991X.20210842
引用本文: 徐祖信,张竞艺,徐晋,等.城市排水系统提质增效关键技术研究:以马鞍山市为例[J].环境工程技术学报,2022,12(2):348-355 doi: 10.12153/j.issn.1674-991X.20210842
XU Z X,ZHANG J Y,XU J,et al.Study on key technologies for improving quality and efficiency of urban drainage system: a case of Ma′anshan City[J].Journal of Environmental Engineering Technology,2022,12(2):348-355 doi: 10.12153/j.issn.1674-991X.20210842
Citation: XU Z X,ZHANG J Y,XU J,et al.Study on key technologies for improving quality and efficiency of urban drainage system: a case of Ma′anshan City[J].Journal of Environmental Engineering Technology,2022,12(2):348-355 doi: 10.12153/j.issn.1674-991X.20210842

城市排水系统提质增效关键技术研究—以马鞍山市为例

doi: 10.12153/j.issn.1674-991X.20210842
基金项目: 长江生态环境保护修复联合研究项目(第一期)(2019-LHYJ-01-0212-14);中国长江三峡集团有限公司资助项目(202003065)
详细信息
    作者简介:

    徐祖信(1956—),女,中国工程院院士,博士,主要从事流域水环境综合治理研究,xzx@tongji.edu.cn

    通讯作者:

    金伟(1970—),男,研究员,博士,主要从事排水系统污染控制研究,tjjinwei@tongji.edu.cn

  • 中图分类号: X52

Study on key technologies for improving quality and efficiency of urban drainage system: a case of Ma′anshan City

  • 摘要: 长江中下游城市普遍存在排水系统提质增效问题,成为制约城市水环境长效改善的关键瓶颈。结合长江生态环境保护修复马鞍山驻点城市需求,围绕精准控源截污和雨天排放污染控制,以马鞍山市主要城市内河——慈湖河水系水质改善为案例,开展了4项关键技术研究:1)基于河流网格化水量水质监测的排污口溯源方法,结合反问题方法,确定慈湖河干流污染负荷排入的主要区域,实现简便、准确的排污口排查;2)基于水质特征因子构建蒙特卡洛-化学质量平衡模型,识别慈湖河主要排区雨水管道混接污水量和地下水入渗量,利用生物遗传算法(MGA)识别混接和破损的具体点位;3)综合考虑降雨特征、前期晴天数、管道沉积物、混接污水等多因素影响,建立排口水质和水量动态过程线,提出基于多因素影响的“浓度-体积”优化调蓄设计,大幅提高截留污染负荷;4)提出并探究基于管道絮凝的溢流污染高效控制技术的可行性。通过科技支撑和各方的努力,慈湖河水质得到稳定改善,为进一步提升长江中下游城市水环境综合治理成效提供参考和借鉴。

     

  • 图  1  网格化水量、水质监测与排污口溯源示意

    注:Qr为上游来水水量,m3/s;Cr为上游来水污染物浓度,mg/L;Ci为第i个河段断面污染物浓度,mg/L;K1K2分别为第1个、第2个河段污染物指标降解速率,s-1

    Figure  1.  Schematic diagram of gird water quantity and quality monitoring and sewage outfalls tracing

    图  2  基于网格化监测的排污口溯源方法技术流程

    Figure  2.  Technical process of sewage outfalls tracing method based on grid monitoring

    图  3  慈湖河干流断面水量和氯化物浓度监测结果

    注:各补水点表示污水处理厂尾水补充;霍里山支流表示霍里山支流汇入。

    Figure  3.  Monitoring results of water flow and chloride concentration in the mainstream section of Cihu River

    图  4  雨水管网子片区划分及其不同来源水量解析结果

    注:深蓝色为划分的管网片区,浅蓝色为拆分的子片区。

    Figure  4.  Sub area division of rainwater pipe network and analytical results of water volume from different sources

    图  5  混接风险和入渗风险地图

    注:A1、A2、B1、C1、D1为高风险区,H为排查出的真实混接区域。

    Figure  5.  Map of mixing risk and infiltration risk

    图  6  实时调蓄方法示意

    Figure  6.  Comparison between traditional regulation and real-time regulation

    图  7  不同工况下的调蓄池体积

    Figure  7.  Detention tank volumes under different operating conditions

    图  8  不同混合反应时间、沉淀时间下浊度、TCOD、TP的去除率

    注:体系1~5分别代表传输距离为135.6、271.2、406.8、542.4、678 m的试验体系。

    Figure  8.  Removal of turbidity, TCOD and TP under different mixing reaction time and settling time

  • [1] 徐祖信, 张辰, 李怀正.我国城市河流黑臭问题分类与系统化治理实践[J]. 给水排水,2018,54(10):1-5. doi: 10.3969/j.issn.1002-8471.2018.10.002

    XU Z X, ZHANG C, LI H Z. Classification and systematic treatment of black order problem in urban rivers in China[J]. Water & Wastewater Engineering,2018,54(10):1-5. doi: 10.3969/j.issn.1002-8471.2018.10.002
    [2] WANG J, LIU G H, WANG J Y, et al. Current status, existent problems, and coping strategy of urban drainage pipeline network in China[J]. Environmental Science and Pollution Research,2021,28(32):43035-43049. doi: 10.1007/s11356-021-14802-9
    [3] 住房和城乡建设部. 中国城市建设统计年鉴[M]. 北京: 中国计划出版社, 2010.
    [4] 石小峰, 马宏伟, 段琦琦, 等.皖北某城市排水管网调查及整改对策分析[J]. 工业用水与废水,2018,49(4):36-39. doi: 10.3969/j.issn.1009-2455.2018.04.008

    SHI X F, MA H W, DUAN Q Q, et al. Analysis on investigation of urban drainage pipe network in a city of Northern Anhui Province and its rectification measures[J]. Industrial Water & Wastewater,2018,49(4):36-39. doi: 10.3969/j.issn.1009-2455.2018.04.008
    [5] 徐祖信, 徐晋, 金伟, 等.我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水,2019,55(3):1-5.

    XU Z X, XU J, JIN W, et al. Challenges and opportunities of black and odorous water body in the cities of China[J]. Water & Wastewater Engineering,2019,55(3):1-5.
    [6] DU P, LI X, YANG Y L, et al. Effect of rapid-mixing conditions on the evolution of micro-flocs to final aggregates during two-stage alum addition[J]. Environmental Technology,2021,42(20):3122-3131. doi: 10.1080/09593330.2020.1723710
    [7] TEH C Y, BUDIMAN P M, SHAK K P Y, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Industrial & Engineering Chemistry Research,2016,55(16):4363-4389.
    [8] WEYAND M, DOHMANN M, FRIES D, et al. Reduction of combined sewer overflow quality by application of the coagulation process[J]. Water Science and Technology,1993,27(5/6):145-152.
    [9] HEINZMANN B. Coagulation and flocculation of stormwater from a separate sewer system: a new possibility for enhanced treatment[J]. Water Science and Technology,1994,29(12):267-278. doi: 10.2166/wst.1994.0624
    [10] SANSALONE J J, KIM J Y. Suspended particle destabilization in retained urban stormwater as a function of coagulant dosage and redox conditions[J]. Water Research,2008,42(4/5):909-922.
    [11] GANDHI R, RAY A K, SHARMA V K, et al. Treatment of combined sewer overflows using ferrate (Ⅵ)[J]. Water Environment Research:A Research Publication of the Water Environment Federation,2014,86(11):2202-2211. doi: 10.2175/106143014X14062131178475
    [12] 张力, 张善发, 周琪.化学强化一级处理工艺处理上海合流污水溢流水的中试研究[J]. 净水技术,2010,29(3):18-21. doi: 10.3969/j.issn.1009-0177.2010.03.006

    ZHANG L, ZHANG S F, ZHOU Q. Pilot scale experiment on chemically enhanced primary treatment(CEPT) for combined sewer overflows(CSOs) in Shanghai[J]. Water Purification Technology,2010,29(3):18-21. doi: 10.3969/j.issn.1009-0177.2010.03.006
    [13] 盛铭军, 马鲁铭, 王红武, 等.强化混凝—高效沉淀工艺控制城市溢流污水研究[J]. 给水排水,2006,32(9):23-25. doi: 10.3969/j.issn.1002-8471.2006.09.008

    SHENG M J, MA L M, WANG H W, et al. Enhanced coagulation and high-rate sedimentation process for control of municipal combined sewer overflows[J]. Water & Wastewater Engineering,2006,32(9):23-25. doi: 10.3969/j.issn.1002-8471.2006.09.008
    [14] EL-GENDY A S, LI J G, BISWAS N. Treatment of combined sewer overflow using retention treatment basin assisted with polymer chemical coagulation[J]. Water Environment Research:A Research Publication of the Water Environment Federation,2008,80(9):774-783. doi: 10.2175/106143007X22096
    [15] 聂凤. 合流制排水系统调蓄池絮凝调蓄及排沙技术研究[D]. 衡阳: 南华大学, 2012.
    [16] 章剑. 雨污混接系统溢流分析及初级处理研究[D]. 合肥: 安徽建筑工业学院, 2010.
    [17] 彭勃. 塘西河初期雨水径流混凝净化处理探究[D]. 合肥: 合肥工业大学, 2015.
    [18] EL SAMRANI A G, LARTIGES B S, VILLIÉRAS F. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization[J]. Water Research,2008,42(4/5):951-960.
    [19] ZHAO Z M, SUN W J, RAY M B, et al. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Frontiers of Environmental Science & Engineering,2019,13(5):1-13.
    [20] MORRISSEY K L, FAIRBANKS B D, BULL D S, et al. Flocculation behavior and mechanisms of block copolymer architectures on silica microparticle and Chlorella vulgaris systems[J]. Journal of Colloid and Interface Science,2020,567:316-327. doi: 10.1016/j.jcis.2020.02.001
    [21] GU S G, LIAN F, YAN K J, et al. Application of polymeric ferric sulfate combined with cross-frequency magnetic field in the printing and dyeing wastewater treatment[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research,2019,80(8):1562-1570. ◇ doi: 10.2166/wst.2019.401
  • 加载中
图(8)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  290
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 网络出版日期:  2022-04-06

目录

    /

    返回文章
    返回