Pollution characterization and source apportionment of n-alkanes during the winter in Qingdao City
-
摘要:
为研究青岛市冬季大气PM2.5中正构烷烃的浓度水平、分子组成以及来源,于2020年1月10—23日在青岛市崂山区采集城市地区大气PM2.5样品,通过气相色谱-质谱(GC-MS)进行定量分析得到26种正构烷烃,并对正构烷烃的污染特征及来源进行详细分析。结果表明:正构烷烃浓度为59.2~429.2 ng/m3,平均浓度为(230.9±111.7) ng/m3,其中正二十四烷烃是浓度最高的单体物种,浓度为49.63 ng/m3。依据GB 3095—2012《环境空气质量标准》PM2.5二级浓度限值,采样期间分别有8天污染天和6天清洁天,污染天和清洁天正构烷烃的浓度分别为(283.7±93.6)和(160.5±82.1) ng/m3。污染天和清洁天正构烷烃碳数分布相似,主峰碳为C22,次峰碳为C24。污染天和清洁天正构烷烃的碳优势指数(CPI、CPI1和CPI2)分别为0.91、0.81、1.19和0.98、0.84、1.38,植物蜡贡献率分别为6.67%和19.31%,表明人为排放源是青岛市冬季正构烷烃的主要来源。主成分分析结果表明,青岛市冬季正构烷烃主要来自人为排放源(煤炭燃烧、车辆尾气排放),植物排放源的贡献较小。潜在源分析结果表明,正构烷烃主要来自西北方向的长距离传输,低碳数正构烷烃和高碳数正构烷烃的潜在源分布基本一致。
Abstract:To investigate mass concentrations, molecular compositions and sources of n-alkanes in PM2.5 in Qingdao during the winter, PM2.5 samples were collected from Laoshan District, Qingdao from January 10 to 23, 2020. Twenty-six kinds of n-alkanes (C11-C36) were determined through quantitative analysis by gas chromatography-mass spectrometry (GC-MS), and the pollution characteristics and sources of n-alkanes were analyzed in detail. The results showed that the concentration of total n-alkanes was (230.9±111.7)ng/m3, with the average concentration ranging from 59.2-429.2 ng/m3. C24 was the monomer species with the highest concentration, which concentration was 49.63 ng/m3. According to the secondary concentration limit of PM2.5 of the National Ambient Air Quality Standards of China (NAAQS), the sampling period was divided into 8 polluted days and 6 clean days. The concentrations of n-alkanes on polluted and clean days were (283.7±93.6) ng/m3 and (160.5±82.1) ng/m3, respectively. The carbon number distribution of n-alkanes on polluted days and clean days was similar. The main peak carbon (Cmax) was C22 and the secondary peak carbon was C24. CPI, CPI1 and CPI2 values of n-alkanes on polluted and clean days were 0.91, 0.81, 1.19 and 0.98, 0.84, 1.38, respectively, and %WaxCn was 6.67% and 19.31%, respectively, indicating that anthropogenic emissions were the main source of n-alkanes in Qingdao during the winter. Principal component analysis (PCA) results showed that the n-alkanes in Qingdao during the winter mainly came from anthropogenic emission sources (coal combustion, vehicle exhaust emissions), and the contribution of plant emission sources was small. The potential source analysis results showed that the potential source distributions of low carbon number n-alkanes and high carbon number n-alkanes were basically the same, mainly from the long-distance transmission in the northwest direction.
-
Key words:
- n-alkanes /
- Qingdao /
- PM2.5 /
- source apportionment
-
表 1 青岛市冬季采样期间正构烷烃主成分分析
Table 1. Principal component analysis of n-alkanes during winter sampling in Qingdao
项目 主成分1 主成分2 主成分3 主成分4 C11 0.874 0.378 −0.020 0.268 C12 0.840 0.394 0.001 0.060 C13 0.804 0.185 −0.478 0.120 C14 0.902 −0.055 −0.373 −0.175 C15 0.975 −0.058 −0.028 −0.167 C16 0.966 −0.094 0.058 −0.152 C17 0.837 −0.221 0.441 0.141 C18 0.763 0.065 −0.348 0.512 C19 0.770 −0.100 −0.326 0.520 C20 0.989 0.088 −0.015 −0.080 C21 0.995 −0.078 −0.014 −0.044 C22 0.930 −0.170 −0.220 −0.223 C23 0.926 −0.098 −0.250 −0.247 C24 0.913 −0.205 0.311 −0.035 C25 0.868 0.028 0.453 0.099 C26 0.976 0.010 0.115 −0.155 C27 0.968 0.016 −0.247 0.010 C28 0.963 0.065 0.096 −0.237 C29 0.914 0.109 0.278 −0.232 C30 0.234 0.543 0.529 0.411 C31 0.427 −0.481 0.161 0.698 C32 −0.203 0.935 −0.122 0.127 C33 0.260 0.699 0.627 −0.115 C34 −0.631 0.563 −0.207 0.038 C35 −0.051 −0.314 0.216 −0.196 贡献率/% 63.3 13.5 8.6 6.8 累计贡献率/% 63.3 76.8 85.4 92.2 注:黑色字体为大于0.5的数据。 -
[1] LI L, AN J Y, ZHOU M, et al. An integrated source apportionment methodology and its application over the Yangtze River Delta Region, China[J]. Environmental Science & Technology, 2018, 52(24):14216-14227. [2] WATSON J G. Visibility: science and regulation[J]. Journal of the Air & Waste Management Association,2002,52(6):628-713. [3] KAUFMAN Y J, TANRÉ D, BOUCHER O. A satellite view of aerosols in the climate system[J]. Nature,2002,419:215-223. doi: 10.1038/nature01091 [4] LEE H, HONDA Y, HASHIZUME M, et al. Short-term exposure to fine and coarse particles and mortality: a multicity time-series study in East Asia[J]. Environmental Pollution,2015,207:43-51. doi: 10.1016/j.envpol.2015.08.036 [5] CHANG D, WANG Z, GUO J, et al. Characterization of organic aerosols and their precursors in Southern China during a severe haze episode in January 2017[J]. Science of the Total Environment,2019,691:101-111. doi: 10.1016/j.scitotenv.2019.07.123 [6] JIMENEZ J L, CANAGARATNA M R, DONAHUE N M, et al. Evolution of organic aerosols in the atmosphere[J]. Science,2009,326:1525-1529. doi: 10.1126/science.1180353 [7] HE L Y, HU M, HUANG X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment,2004,38(38):6557-6564. doi: 10.1016/j.atmosenv.2004.08.034 [8] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature,2014,514:218-222. doi: 10.1038/nature13774 [9] 谢绍东, 于淼, 姜明.有机气溶胶的来源与形成研究现状[J]. 环境科学学报,2006,26(12):1933-1939. doi: 10.3321/j.issn:0253-2468.2006.12.001XIE S D, YU M, JIANG M. Research progress in source and formation of organic aerosol[J]. Acta Scientiae Circumstantiae,2006,26(12):1933-1939. doi: 10.3321/j.issn:0253-2468.2006.12.001 [10] KLEEFELD S, HOFFER A, KRIVÁCSY Z, et al. Importance of organic and black carbon in atmospheric aerosols at Mace Head, on the West Coast of Ireland (53°19'N, 9°54'E)[J]. Atmospheric Environment,2002,36(28):4479-4490. doi: 10.1016/S1352-2310(02)00346-1 [11] 邓利群, 李红, 柴发合, 等.北京市东北城区冬季大气细粒子与相关气体污染特征[J]. 中国环境科学,2010,30(7):954-961.DENG L Q, LI H, CHAI F H, et al. Pollution characteristics of the atmospheric fine particles and related gaseous pollutants in the northeastern urban area of Beijing in winter season[J]. China Environmental Science,2010,30(7):954-961. [12] 周春玉, 叶汝求, 汤国才, 等.广州气溶胶中有机物的分布及其与人体健康关系的研究[J]. 环境科学研究,1991,4(2):41-51. doi: 10.3321/j.issn:1001-6929.1991.02.012 [13] SIMONEIT B R T. Organic matter in eolian dusts over the Atlantic Ocean[J]. Marine Chemistry,1977,5(4/5/6):443-464. [14] CHRYSIKOU L P, SAMARA C A. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air[J]. Atmospheric Environment,2009,43(30):4557-4569. doi: 10.1016/j.atmosenv.2009.06.033 [15] SIMONEIT B R T. Organic matter of the troposphere: V. application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations[J]. Journal of Atmospheric Chemistry,1989,8(3):251-275. doi: 10.1007/BF00051497 [16] BI X H, SHENG G Y, PENG P A, et al. Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China[J]. Atmospheric Environment,2003,37(2):289-298. doi: 10.1016/S1352-2310(02)00832-4 [17] WANG G H, KAWAMURA K, LEE S C, et al. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities[J]. Environmental Science & Technology,2006,40(15):4619-4625. [18] DUAN F K, HE K B, LIU X D. Characteristics and source identification of fine particulate n-alkanes in Beijing, China[J]. Journal of Environmental Sciences,2010,22(7):998-1005. doi: 10.1016/S1001-0742(09)60210-2 [19] 张强, 薛迪, 王爽, 等.青岛市PM2.5重污染天气演变过程分析[J]. 中国环境科学,2017,37(10):3623-3635. doi: 10.3969/j.issn.1000-6923.2017.10.003ZHANG Q, XUE D, WANG S, et al. Analysis on the evolution of PM2.5 heavy air pollution process in Qingdao[J]. China Environmental Science,2017,37(10):3623-3635. doi: 10.3969/j.issn.1000-6923.2017.10.003 [20] 魏巍, 石仁德, 张晓红.2019年1月青岛市一次重污染天气过程分析[J]. 资源节约与环保,2019(7):47. doi: 10.3969/j.issn.1673-2251.2019.07.055 [21] 彭倩倩, 刘晓环, 杜金花, 等.青岛冬季霾-沙尘重污染过程PM1理化特征及来源分析[J]. 中国环境科学,2020,40(9):3731-3740. doi: 10.3969/j.issn.1000-6923.2020.09.003PENG Q Q, LIU X H, DU J H, et al. Physicochemical characteristics and source analysis of PM1 during winter haze-dust pollution event in Qingdao[J]. China Environmental Science,2020,40(9):3731-3740. doi: 10.3969/j.issn.1000-6923.2020.09.003 [22] 徐少才, 王静, 吴建会, 等.青岛市PM2.5化学组分特征及综合来源解析[J]. 中国环境监测,2018,34(4):44-53.XU S C, WANG J, WU J H, et al. Characterization of chemical composition and comprehensive source apportionment of PM2.5 in Qingdao[J]. Environmental Monitoring in China,2018,34(4):44-53. [23] 别淑君. 港口地区大气PM2.5及其化学成分的组成特征及来源解析[D]. 济南: 山东大学, 2020. [24] HOPKE P K, GLADNEY E S, GORDON G E, et al. The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol[J]. Atmospheric Environment,1976,10(11):1015-1025. doi: 10.1016/0004-6981(76)90211-0 [25] 赵倩彪, 胡鸣, 张懿华.利用后向轨迹模式研究上海市PM2.5来源分布及传输特征[J]. 环境监测管理与技术,2014,26(4):22-26. doi: 10.3969/j.issn.1006-2009.2014.04.006ZHAO Q B, HU M, ZHANG Y H. Study of source distribution and transportation characteristics of PM2.5 in Shanghai using backward trajectory model[J]. The Administration and Technique of Environmental Monitoring,2014,26(4):22-26. doi: 10.3969/j.issn.1006-2009.2014.04.006 [26] 高阳, 韩永贵, 黄晓宇, 等.基于后向轨迹模式的豫南地区冬季PM2.5来源分布及传输分析[J]. 环境科学研究,2021,34(3):538-48.GAO Y, HAN Y G, HAUNG X Y, et al. PM2.5 source distribution and transmission in winter in Southern Henan Province based on backward trajectory model[J]. Research of Environmental Sciences,2021,34(3):538-48. [27] 崔宏, 刘肖, 秦巧燕. 汾渭平原典型污染城市PM2.5来源分布及传输分析[J/OL]. 环境工程技术学报. doi:10.12153/j.issn.1674-991X.20210310. [28] 安欣欣, 曹阳, 王琴, 等.北京城区PM2.5各组分污染特征及来源分析[J/OL]. 环境科学. doi:10.13227/j.hjkx.202109142. [29] 孙友敏, 范晶, 徐标, 等.省会城市不同功能区大气PM2.5化学组分季节变化及来源分析[J/OL]. 环境科学. doi:10.13227/j.hjkx.202108061. [30] 石慧斌, 黄艺, 程馨, 等.成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报,2021,30(7):1420-1427.SHI H B, HUANG Y, CHENG X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during winter in Chengdu[J]. Ecology and Environmental Sciences,2021,30(7):1420-1427. [31] SUN Y L, ZHUANG G S, TANG A A, et al. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environmental Science & Technology,2006,40(10):3148-3155. [32] 薛国艳. 长三角背景点正构烷烃和多环芳烃类有机气溶胶污染特征和来源[D]. 上海: 华东师范大学, 2020. [33] 吴瑕, 曹芳, 翟晓瑶, 等.长春秋季细颗粒物中有机气溶胶组成特征及来源[J]. 环境科学,2019,40(8):3438-3446. doi: 10.13227/j.hjkx.201901031WU X, CAO F, ZHAI X Y, et al. Molecular composition and source apportionment of fine organic aerosols in autumn in Changchun[J]. Environmental Science,2019,40(8):3438-3446. doi: 10.13227/j.hjkx.201901031 [34] 吴瑕. 哈长城市群冬季细颗粒物中有机气溶胶组成特征及来源[D]. 南京: 南京信息工程大学, 2020. [35] 吴兴贺. 华北平原区域点冬季颗粒有机物化学组成和来源解析[D]. 邯郸: 河北工程大学, 2019. [36] 徐楠, 王甜甜, 李晓, 等.北京冬季PM2.5中有机气溶胶的化学特征和来源解析[J]. 环境科学,2021,42(5):2101-2109.XU N, WANG T T, LI X, et al. Chemical characteristics and source apportionment of organic aerosols in atmospheric PM2.5 in winter in Beijing[J]. Environmental Science,2021,42(5):2101-2109. [37] TIAN Y Z, LIU X, HUO R Q, et al. Organic compound source profiles of PM2.5 from traffic emissions, coal combustion, industrial processes and dust[J]. Chemosphere,2021,278:130429. doi: 10.1016/j.chemosphere.2021.130429 [38] 孙丽娜, 刘刚, 李久海, 等.稻草及其燃烧烟尘中正构烷烃的研究[J]. 中国环境科学,2012,32(11):1948-1954. doi: 10.3969/j.issn.1000-6923.2012.11.004SUN L N, LIU G, LI J H, et al. N-Alkanes in rice straw and the burning smoke[J]. China Environmental Science,2012,32(11):1948-1954. doi: 10.3969/j.issn.1000-6923.2012.11.004 [39] KAWAMURA K, ISHIMURA Y, YAMAZAKI K. Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific[J]. Global Biogeochemical Cycles,2003,17(1):3-1. [40] BRAY E E, EVANS E D. Distribution of n-paraffins as a clue to recognition of source beds[J]. Geochimica et Cosmochimica Acta,1961,22(1):2-15. doi: 10.1016/0016-7037(61)90069-2 [41] SIMONEIT B R T, SHENG G Y, CHEN X J, et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China[J]. Atmospheric Environment Part A:General Topics,1991,25(10):2111-2129. doi: 10.1016/0960-1686(91)90088-O [42] SIMONEIT B R T. Organic matter of the troposphere: III. characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States[J]. Atmospheric Environment (1967),1984,18(1):51-67. doi: 10.1016/0004-6981(84)90228-2 [43] 吕瑞鹤, 吴建会, 冯银厂, 等.北京大气气溶胶中正构烷烃和支链烷烃的特征及其来源分析[J]. 南开大学学报(自然科学版),2018,51(6):87-93.LÜ R H, WU J H, FENG Y C, et al. Characterization, source of n-alkanes and branched alkanes in atmospheric aerosols of Beijing[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2018,51(6):87-93. [44] 向丽, 田密, 杨季冬, 等.重庆万州城区大气PM2.5中正构烷烃污染特征及来源分析[J]. 环境科学学报,2016,36(4):1411-1418.XIANG L, TIAN M, YANG J D, et al. Pollution characteristics and source apportionment of n-alkanes in PM2.5 in Wanzhou[J]. Acta Scientiae Circumstantiae,2016,36(4):1411-1418. [45] 刘晓迪, 孟静静, 侯战方, 等.聊城市冬季PM2.5中正构烷烃和糖类的污染特征及来源解析[J]. 环境科学,2019,40(2):548-557.LIU X D, MENG J J, HOU Z F, et al. Pollution characteristics and source analysis of n-alkanes and saccharides in PM2.5 during the winter in Liaocheng City[J]. Environmental Science,2019,40(2):548-557. [46] SIMONEIT B R T, CARDOSO J N, ROBINSON N. An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia[J]. Chemosphere,1990,21(10/11):1285-1301. [47] LÜ R H, SHI Z B, ALAM M S, et al. Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China[J]. Atmospheric Environment,2019,202:244-255. doi: 10.1016/j.atmosenv.2019.01.023 [48] 青岛市统计局. 2019年青岛市国民经济和社会发展统计公报[A/OL]. (2020-03-27)[2021-12-24]. http://qdtj.qingdao.gov.cn/n28356045/n32561056/n32561070/200327102041515838.html. [49] WANG Y Q, ZHANG X Y, DRAXLER R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling & Software,2009,24(8):938-939. [50] 刘慧, 夏敦胜, 陈红, 等.2017年兰州市大气污染物输送来源及传输特征模拟分析[J]. 环境科学研究,2019,32(6):993-1000. doi: 10.13198/j.issn.1001-6929.2019.01.08LIU H, XIA D S, CHEN H, et al. Simulation analysis of sources and transmission characteristics of air pollutants in Lanzhou City in 2017[J]. Research of Environmental Sciences,2019,32(6):993-1000. ⊕ doi: 10.13198/j.issn.1001-6929.2019.01.08