Study on the influence of urban green space and its spillover effect on PM2.5 concentration: a case of urban districts of Hefei City
-
摘要:
为探究城市绿地及其溢出效应对 PM2.5 浓度的影响,利用2018年合肥市主城区的遥感影像和PM2.5栅格数据,通过PM2.5浓度空间分布自相关分析将城市划分为HH(high-high)效应区、LL(low-low)效应区和无明显效应区3个区域。根据绿地解译和筛选得到研究绿地,通过ArcGIS软件对PM2.5栅格数据进行空间统计,并利用SPSS软件进行相关分析和回归分析。结果表明:不同区域绿地的溢出效应对PM2.5浓度的影响不同,在HH效应区内随距离增加PM2.5平均浓度减小,在LL效应区内随距离增加PM2.5平均浓度增加;不同区域绿地指标对PM2.5浓度变化的影响效应不同,在LL效应区归一化植被指数(NDVIg)对PM2.5浓度变化影响最大,在HH效应区和无明显效应区绿地面积指数(Sg)对PM2.5浓度变化影响最大。
Abstract:Fine particulate matter (PM2.5) has been paid more and more attention because of its negative effect on human health. Previous studies have shown that green space has an effect on PM2.5 concentration, but it is not clear whether this effect correlates with the spatial distribution of PM2.5 concentration. In addition, most of these studies focus on the change of PM2.5 concentration in the interior of green space, and there is little research on the spillover effect of green space. Based on the 2018 remote sensing images and PM2.5 raster data of urban districts in Hefei, the study area was divided into three regions, namely HH (High-High) effect area, LL (Low-Low) effect area and insignificant effect area through autocorrelation analysis of the spatial distribution of PM2.5 concentration. According to the interpretation and selection of the green space, the research green spaces were obtained, PM2.5 raster data were statistically analyzed by ArcGIS, and the correlation analysis and regression analysis were carried out by SPSS. The results showed that the spillover effect of green spaces in different regions had different effects on PM2.5 concentration. In HH effect area, the average concentration of PM2.5 decreased with the increase of the distance from the green spaces, but it increased in LL effect area. The effect of green space index on the variation of PM2.5 concentration was different in different regions, NDVIg had the greatest effect on PM2.5 concentration in LL effect area, while Sg had the greatest effect on PM2.5 concentration in HH effect area and insignificant effect area.
-
Key words:
- PM2.5 /
- urban green space /
- spillover effect /
- green space index /
- Hefei City
-
表 1 绿地空间形态与景观构成指标
Table 1. Spatial form and landscape component index of green space
类别 指标 计算公式 单位 取值 空间形态 面积指数(Sg) Sg=Ag/10 000 hm2 >0 周长指数(Cg) Cg=Pg m >0 形状指数(LSIg) LSIg=0.25Pg/Ag1/2 ≥1 分维数(FDIg) FDIg=2ln(Pg/k)/ln Ag 1~2 近圆形形状指数(RCCg) RCCg=1−Ag/Ag' 0~1 景观构成 归一化植被
指数(NDVIg)NDVIg=(NIR−R)/
(NIR+R)0~1 水体面积占比(PWg) PWg=Aw/Ag 0~1 注:Ag为绿地面积,m2;Pg为绿地周长,m;k为常数;Ag'为最小外接圆面积,m2;Aw为水面面积,m2;NIR为红外波段的像素值;R为红光波段的像素值。 表 2 不同区域绿地数量
Table 2. Amount of green space in different areas
PM2.5效应区 绿地编号 绿地数量/块 HH效应区 2、3、4、6、14、15、16 7 LL效应区 8、9、10、11、18 5 无明显效应区 1、5、7、12、13、17 6 注:各绿地面积大于4 hm2。 表 3 距离与绿地外围PM2.5平均浓度相关性分析
Table 3. Correlation analysis between distance and average concentration of PM2.5 outside green spaces
HH
效应区绿地2 绿地3 绿地4 绿地6 绿地14 绿地15 绿地16 −0.461 −0.971** −0.792** −0.981** −0.997** −0.996** −0.994** LL
效应区绿地8 绿地9 绿地10 绿地11 绿地18 0.996** 0.999** 0.907** 0.985** 0.783** 无明显
效应区绿地1 绿地5 绿地7 绿地12 绿地13 绿地17 0.999** 0.998** −0.748* 1.000** −0.979** 0.999** 注:**表示在0.01水平(双侧)显著相关;*表示在0.05水平(双侧)显著相关。 表 4 绿地指标与PM2.5浓度变化的相关性
Table 4. Correlation between green space index and PM2.5 concentration
效应区 Sg Cg LSIg FDIg RCCg NDVIg PWg HH
效应区内部 0.916** 0.895** 0.021 −0.114 −0.165 0.125 −0.449 外围 0.904** 0.918** 0.246 0.114 −0.081 0.207 −0.404 LL
效应区内部 0.292 0.318 −0.151 −0.232 0.308 −0.340 −0.879 外围 0.341 0.388 −0.038 −0.139 0.270 −0.444 −0.362 无明显
效应区内部 −0.846* −0.962** −0.331 −0.163 −0.119 −0.266 0.895 外围 −0.756 −0.830* −0.224 −0.071 −0.132 −0.187 0.894 注:同表3。 表 5 PM2.5浓度影响因素相关性分析
Table 5. Correlation analysis of influencing factors of PM2.5 concentration
影响因素 Sg Cg LSIg FDIg RCCg NDVIg Cg 0.820** LSIg −0.059 0.375 FDIg −0.233 0.114 0.948** RCCg −0.321 −0.055 0.574* 0.608** NDVIg 0.015 −0.199 −0.005 0.136 0.338 PWg −0.226 −0.177 −0.133 −0.125 −0.338 −0731** 注:同表3。 表 6 PM2.5浓度变化量与各影响因素最适模型
Table 6. Optimum model of PM2.5 concentration variation and influencing factors
效应区 最适模型 HH效应区 内部 Y1=−0.010+0.002Sg−0.091LSIg+0.860NDVIg 外部 Y2=−0.139+0.001Sg+0.044LSIg+0.594NDVIg LL效应区 内部 Y3=0.237−0.001Sg−0.025LSIg−1.015NDVIg 外部 Y4=0.258−0.001Sg+0.031LSIg−1.397NDVIg 无明显效应区 内部 Y5=0.135−0.000 253Sg−0.129LSIg+0.153NDVI 外部 Y6=−0.002−0.000 101Sg−0.037LSIg+0.206NDVIg -
[1] 王橹玺, 李慧, 张文杰, 等.大气PM2.5载带重金属的区域污染特征研究[J]. 环境科学研究,2021,34(4):849-862.WANG L X, LI H, ZHANG W J, et al. Regional pollution characteristics of heavy metals in PM2.5[J]. Research of Environmental Sciences,2021,34(4):849-862. [2] LI Y, LIAO Q, ZHAO X G, et al. Premature mortality attributable to PM2.5 pollution in China during 2008-2016: underlying causes and responses to emission reductions[J]. Chemosphere,2021,263:127925. doi: 10.1016/j.chemosphere.2020.127925 [3] 蔡宁宁, 王宝庆, 胡新鑫, 等.室内人体行走引起颗粒物再悬浮的试验研究[J]. 环境科学研究,2021,34(3):766-771. doi: 10.13198/j.issn.1001-6929.2020.09.03CAI N N, WANG B Q, HU X X, et al. Experimental study of human walking-induced indoor particle resuspension[J]. Research of Environmental Sciences,2021,34(3):766-771. doi: 10.13198/j.issn.1001-6929.2020.09.03 [4] XING Y F, XU Y H, SHI M H, et al. The impact of PM2.5 on the human respiratory system[J]. Journal of Thoracic Disease,2016,8(1):E69-E74. [5] ZHANG D T, TIAN Y H, ZHANG Y, et al. Fine particulate air pollution and hospital utilization for upper respiratory tract infections in Beijing, China[J]. International Journal of Environmental Research and Public Health,2019,16(4):533. doi: 10.3390/ijerph16040533 [6] 李超群, 钟梦莹, 武瑞鑫, 等.常见地被植物叶片特征及滞尘效应研究[J]. 生态环境学报,2015,24(12):2050-2055. doi: 10.16258/j.cnki.1674-5906.2015.12.020LI C Q, ZHONG M Y, WU R X, et al. Study on leaf characteristics and dust-capturing capability of common ground cover plants[J]. Ecology and Environmental Sciences,2015,24(12):2050-2055. doi: 10.16258/j.cnki.1674-5906.2015.12.020 [7] ERKEBAEV T, ATTOKUROV K, SATTAROV A, et al. Dust retention ability of plants as a factor improving environment air[J]. American Journal of Plant Sciences,2021,12(2):187-198. doi: 10.4236/ajps.2021.122011 [8] 殷卓君, 沈小雪, 李瑞利, 等.深圳市常见园林植物滞尘效应研究[J]. 北京大学学报(自然科学版),2020,56(6):1081-1090. doi: 10.13209/j.0479-8023.2020.096YIN Z J, SHEN X X, LI R L, et al. Study on the dust retention effect of common garden plants in Shenzhen[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2020,56(6):1081-1090. doi: 10.13209/j.0479-8023.2020.096 [9] RUI L Y, BUCCOLIERI R, GAO Z, et al. The impact of green space layouts on microclimate and air quality in residential districts of Nanjing, China[J]. Forests,2018,9(4):224. doi: 10.3390/f9040224 [10] 戴菲, 陈明, 王敏, 等.城市街区形态对PM10、PM2.5的影响研究: 以武汉为例[J]. 中国园林,2020,36(3):109-114.DAI F, CHEN M, WANG M, et al. Effect of urban block form on reducing particulate matter: a case study of Wuhan[J]. Chinese Landscape Architecture,2020,36(3):109-114. [11] 张进, 陈健.高交通密度道路周边乔灌草型绿地对大气颗粒物的影响[J]. 环境污染与防治,2019,41(9):1094-1097. doi: 10.15985/j.cnki.1001-3865.2019.09.017ZHANG J, CHEN J. The effect of arbor-shrub-grass green space on atmospheric particulate matters around high traffic density road[J]. Environmental Pollution & Control,2019,41(9):1094-1097. doi: 10.15985/j.cnki.1001-3865.2019.09.017 [12] 王科朴, 张语克, 刘雪华.北京城市绿地对大气颗粒物的削减量计算[J]. 环境科学与技术,2020,43(4):121-129. doi: 10.19672/j.cnki.1003-6504.2020.04.018WANG K P, ZHANG Y K, LIU X H. Modeled particulate matters removal by urban green lands in Beijing[J]. Environmental Science & Technology,2020,43(4):121-129. doi: 10.19672/j.cnki.1003-6504.2020.04.018 [13] 佘欣璐, 高吉喜, 张彪.基于城市绿地滞尘模型的上海市绿色空间滞留PM2.5功能评估[J]. 生态学报,2020,40(8):2599-2608.SHE X L, GAO J X, ZHANG B. PM2.5 removal service of green spaces in Shanghai based on the dust retention simulation on urban vegetation[J]. Acta Ecologica Sinica,2020,40(8):2599-2608. [14] CAI L Y, ZHUANG M Z, REN Y. A landscape scale study in Southeast China investigating the effects of varied green space types on atmospheric PM2.5 in mid-winter[J]. Urban Forestry & Urban Greening,2020,49:126607. [15] 戴菲, 毕世波, 孙培源.PM2.5消减效应导向下的城市绿色基础设施网络优化: 以湖北省武汉市江汉区为例[J]. 风景园林,2020,27(10):51-56.DAI F, BI S B, SUN P Y. Urban green infrastructure network optimization guided by PM2.5 reduction effect: a case study of Jianghan District, Wuhan City, Hubei Province[J]. Landscape Architecture,2020,27(10):51-56. [16] JEANJEAN A P R, BUCCOLIERI R, EDDY J, et al. Air quality affected by trees in real street canyons: the case of Marylebone neighbourhood in central London[J]. Urban Forestry & Urban Greening,2017,22:41-53. [17] 屈海燕, 宋迪, 刘凌汉, 等.庭院乔木对PM2.5污染分布影响的模拟分析[J]. 沈阳建筑大学学报(自然科学版),2019,35(6):1127-1135.QU H Y, SONG D, LIU L H, et al. Simulation for the effect of courtyard plants on PM2.5 pollution distribution[J]. Journal of Shenyang Jianzhu University (Natural Science),2019,35(6):1127-1135. [18] 孙志红, 王亚青.金融集聚对区域经济增长的空间溢出效应研究: 基于西北五省数据[J]. 审计与经济研究,2017,32(2):108-118.SUN Z H, WANG Y Q. The study of spatial spillover effects of financial agglomeration on regional economic growth: based on the data of five northwestern provinces[J]. Journal of Audit & Economics,2017,32(2):108-118. [19] HAMMER M S, van DONKELAAR A, LI C, et al. Global estimates and long-term trends of fine particulate matter concentrations (1998-2018)[J]. Environmental Science & Technology,2020,54(13):7879-7890. [20] 陈明, 胡义, 戴菲.城市绿地空间形态对PM2.5的消减影响: 以武汉市为例[J]. 风景园林,2019,26(12):74-78.CHEN M, HU Y, DAI F. Influence of urban green space forms on PM2.5 reduction: a case study of Wuhan[J]. Landscape Architecture,2019,26(12):74-78. [21] 邱媛, 管东生, 宋巍巍, 等.惠州城市植被的滞尘效应[J]. 生态学报,2008,28(6):2455-2462. doi: 10.3321/j.issn:1000-0933.2008.06.003QIU Y, GUAN D S, SONG W W, et al. The dust retention effect of urban vegetation in Huizhou, Guangdong Province[J]. Acta Ecologica Sinica,2008,28(6):2455-2462. doi: 10.3321/j.issn:1000-0933.2008.06.003 [22] 陈博. 北京地区典型城市绿地对PM2.5等颗粒物浓度及化学组成影响研究[D]. 北京: 北京林业大学, 2016. [23] 李新宇, 赵松婷, 李延明, 等.北京市不同主干道绿地群落对大气PM2.5浓度消减作用的影响[J]. 生态环境学报,2014,23(4):615-621. doi: 10.3969/j.issn.1674-5906.2014.04.012LI X Y, ZHAO S T, LI Y M, et al. Subduction effect of urban arteries green space on atmospheric concentration of PM2.5 in Beijing[J]. Ecology and Environmental Sciences,2014,23(4):615-621. doi: 10.3969/j.issn.1674-5906.2014.04.012 [24] 宋晓晖, 毕晓辉, 吴建会, 等.杭州市空气颗粒物污染特征及变化规律研究[J]. 环境污染与防治,2012,34(7):60-63. doi: 10.3969/j.issn.1001-3865.2012.07.013SONG X H, BI X H, WU J H, et al. Study on the characters and variation of ambient particulate matter pollution in Hangzhou[J]. Environmental Pollution & Control,2012,34(7):60-63. doi: 10.3969/j.issn.1001-3865.2012.07.013 [25] 顾康康, 钱兆, 方云皓, 等.基于ENVI-met的城市道路绿地植物配置对PM2.5的影响研究[J]. 生态学报,2020,40(13):4340-4350.GU K K, QIAN Z, FANG Y H, et al. Influence of vegetation arrangement on PM2.5 in urban roadside based on ENVI-met[J]. Acta Ecologica Sinica,2020,40(13):4340-4350. [26] 李新宇, 赵松婷, 许蕊, 等.园林植物对大气细颗粒物浓度的正负作用评价[J]. 农学学报,2019,9(11):44-49. doi: 10.11923/j.issn.2095-4050.cjas20190500050LI X Y, ZHAO S T, XU R, et al. Positive and negative effects of landscape plants on atmospheric fine particulate matter concentration[J]. Journal of Agriculture,2019,9(11):44-49. doi: 10.11923/j.issn.2095-4050.cjas20190500050 [27] 王扶潘, 朱乔, 冯凝, 等.深圳大气中VOCs的二次有机气溶胶生成潜势[J]. 中国环境科学,2014,34(10):2449-2457.WANG F P, ZHU Q, FENG N, et al. The generation potential of secondary organic aerosol of atmospheric VOCs in Shenzhen[J]. China Environmental Science,2014,34(10):2449-2457. [28] 陈文泰, 邵敏, 袁斌, 等.大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报,2013,33(1):163-172. doi: 10.13671/j.hjkxxb.2013.01.026CHEN W T, SHAO M, YUAN B, et al. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs)[J]. Acta Scientiae Circumstantiae,2013,33(1):163-172. doi: 10.13671/j.hjkxxb.2013.01.026 [29] 马超, 薛志钢, 李树文, 等.VOCs排放、污染以及控制对策[J]. 环境工程技术学报,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016MA C, XUE Z G, LI S W, et al. VOCs emission, pollution and control measures[J]. Journal of Environmental Engineering Technology,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016 [30] WEITKAMP E A, SAGE A M, PIERCE J R, et al. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber[J]. Environmental Science & Technology,2007,41(20):6969-6975. [31] GRIESHOP A P, LOGUE J M, DONAHUE N M, et al. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution[J]. Atmospheric Chemistry and Physics,2009,9(4):1263-1277. doi: 10.5194/acp-9-1263-2009 [32] 张鑫. 南京城市道路绿地对PM2.5扩散影响研究[D]. 南京林业大学, 2018. [33] 周亚端, 朱宽广, 黄凡, 等. 新冠肺炎疫情期间湖北省大气污染物减排效果评估[J]. 环境科学与技术, 2020, 43(3): 228-236.ZHOU Y D, ZHU K G, HUANG F, et al. Emission reductions and air quality improvements during the COVID-19 pandemic in Hubei Province[J]. Environmental Science and Technology, 2020, 43(3): 228-236.