留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究

张亮 周姝岑 李攀 陈文松

张亮,周姝岑,李攀,等.电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究[J].环境工程技术学报,2023,13(2):639-647 doi: 10.12153/j.issn.1674-991X.20220043
引用本文: 张亮,周姝岑,李攀,等.电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究[J].环境工程技术学报,2023,13(2):639-647 doi: 10.12153/j.issn.1674-991X.20220043
ZHANG L,ZHOU S C,LI P,et al.Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process[J].Journal of Environmental Engineering Technology,2023,13(2):639-647 doi: 10.12153/j.issn.1674-991X.20220043
Citation: ZHANG L,ZHOU S C,LI P,et al.Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process[J].Journal of Environmental Engineering Technology,2023,13(2):639-647 doi: 10.12153/j.issn.1674-991X.20220043

电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究

doi: 10.12153/j.issn.1674-991X.20220043
基金项目: 国家重点研发计划(2021YFC3200805),国家自然科学基金面上项目(51978489)
详细信息
    作者简介:

    张亮(1997—),男,硕士研究生,主要从事水体污染研究,1044172527@qq.com

    通讯作者:

    李攀(1980—),女,副教授,主要从事微纳米气泡研究,lipan@tongji.edu.cn

  • 中图分类号: X703

Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process

  • 摘要:

    高盐印染废水具有色度大、可生化性差、水质水量不稳定等特点,以致难以通过传统生化方法得到高效处理。将微纳米气泡臭氧(O3)高级氧化工艺与电絮凝(EC)工艺组合处理高盐印染废水,探究2种工艺的耦合作用,并研究电流密度、盐浓度、pH等因素对组合工艺处理效果的影响。结果表明,单独EC法处理印染废水在一定程度有脱色和去除有机物的效果,但效率低。在相同条件下,EC和O3同时处理(EC+O3)150 min与EC处理30 min后再经O3处理120 min (EC→O3)过程相比,EC+O3处理印染废水的效率更高,去除1 mg COD消耗的O3仅为0.46~1.39 mg。随着电流密度和pH的升高,EC+O3工艺的色度、UV254、COD和TOC去除率增加;盐浓度的增加对色度、UV254、COD和TOC去除率影响不大。比较了O3微纳米气泡工艺、高级氧化法H2O2/O3、EC+O3 3种方法对新疆和浙江实际印染废水的处理效果,并进行了经济性分析。3种微纳米气泡处理工艺的单位污染物电能消耗量(EE/O)由低到高为EC+O3 < H2O2/O3 < O3

     

  • 图  1  电絮凝-微纳米气泡臭氧氧化装置

    Figure  1.  Electroflocculation-micro-nano-bubble ozonation oxidation device

    图  2  EC处理印染废水的色度、UV254、COD、TOC去除率

    Figure  2.  Chromaticity, UV254, COD and TOC removal rate of printing and dyeing wastewater treated by EC process

    图  3  EC→O3工艺中不同EC处理时间下印染废水的色度、UV254、COD、TOC去除率的变化

    Figure  3.  Change of chromaticity, UV254, COD and TOC removal rate of printing and dyeing wastewater under different EC treatment time in EC→O3 process

    图  4  EC+O3过程中色度、UV254、COD、TOC去除率及O/C的变化

    Figure  4.  Change of chromaticity, UV254, COD, TOC removal rate and O/C of EC+O3 process

    图  5  电流密度对色度、UV254、COD、TOC去除率的影响

    Figure  5.  Effect of current density on chromaticity, UV254, COD and TOC removal rate

    图  6  电流密度对O/C的影响

    Figure  6.  Effect of current density on O/C

    图  7  NaCl浓度对色度、UV254、COD、TOC去除率和O/C的影响

    Figure  7.  Effect of NaCl concentration on chromaticity, UV254, COD, TOC removal rate and O/C rate

    图  8  pH对色度、UV254、COD、TOC去除率和O/C的影响

    Figure  8.  Effect of pH on chromaticity, UV254, COD, TOC removal rate and O/C

    图  9  微纳米气泡臭氧及其组合工艺处理新疆实际印染废水的色度、UV254、COD、TOC去除率及O/C变化

    Figure  9.  Change of chromaticity, UV254, COD, TOC removal rate and O/C of micro-nano-bubbles ozone and its combined process to treat actual printing and dyeing wastewater from Xinjiang

    表  1  不同指标检测所用的仪器

    Table  1.   Detection instruments for different detection indexes

    检测指标仪器名称型号生产厂家
    气体臭氧浓度气相臭氧浓度检测仪Model600HARE
    气体流量气体质量流量计ELP-200Jitsugyo
    TOC总有机碳分析仪TOC-L CPHShimadzu
    pHpH 酸度计FE20梅特勒-托利多仪器
    有限公司
    UV254
    COD
    紫外-可见分光光度计DR6000Hach
    色度高效液相色谱仪AcquityWaters
    下载: 导出CSV

    表  2  实际废水水质特征

    Table  2.   Water quality characteristics of actual wastewater

    废水
    来源
    pH电导率/
    (mS/cm)
    色度COD/
    (mg/L)
    TOC浓度/
    (mg/L)
    新疆7.8063.2026.41 510922.0
    浙江8.4331.7927.31 070464.3
    下载: 导出CSV

    表  3  O3、H2O2/O3和EC+O3工艺的操作参数与EE/O

    Table  3.   Operating parameters and EE/O for O3, H2O2/O3 and EC+O3 processes

    废水来源工艺电压/V电流/Alg(Cinit/Cfin)(EE/O)/
    (kW·h/m3)
    新疆O32201.7460.06132.09
    H2O2/O32201.7460.07091.81
    EC6.903.0000.08870.08
    O32201.7460.08871.44
    EC+O31.52
    浙江O32201.7460.09601.33
    H2O2/O32201.7460.11301.13
    EC6.203.0000.13300.05
    O32201.7460.13300.96
    EC+O31.01
    下载: 导出CSV
  • [1] 徐艺铭, 刘永红, 王宁.高盐印染废水处理技术研究进展[J]. 应用化工,2020(11):2859-2863. doi: 10.3969/j.issn.1671-3206.2020.11.041

    XU Y M, LIU Y H, WANG N. Research progress on high salt treatment technology and dyeing wastewater[J]. Applied Chemical Industry,2020(11):2859-2863. doi: 10.3969/j.issn.1671-3206.2020.11.041
    [2] 景新军, 蔡大牛, 李斌, 等.印染废水深度处理技术进展[J]. 水处理技术,2022,48(6):13-19.

    JING X J, CAI D N, LI B, et al. Progress in the deep treatment technology of printing and dyeing wastewater[J]. Technology of Water Treatment,2022,48(6):13-19.
    [3] YASEEN D A, SCHOLZ M. Shallow pond systems planted with Lemna minor treating azo dyes[J]. Ecological Engineering,2016,94:295-305. doi: 10.1016/j.ecoleng.2016.05.081
    [4] 王培良, 钱锋, 宋永会, 等.臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061

    WANG P L, QIAN F, SONG Y H, et al. Degradation mechanisms of sulfadiazine in aqueous solution by ozonation[J]. Journal of Environmental Engineering Technology,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061
    [5] 李妍.臭氧催化氧化法在污水处理中的应用研究进展[J]. 中国资源综合利用,2020,38(12):122-124. doi: 10.3969/j.issn.1008-9500.2020.12.038

    LI Y. Application research progress of ozone catalytic oxidation method in wastewater treatment[J]. China Resources Comprehensive Utilization,2020,38(12):122-124. doi: 10.3969/j.issn.1008-9500.2020.12.038
    [6] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science,2017,246:40-51. doi: 10.1016/j.cis.2017.06.011
    [7] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere,2011,84(9):1175-1180. doi: 10.1016/j.chemosphere.2011.05.054
    [8] ATKINSON A J, APUL O G, SCHNEIDER O, et al. Nanobubble technologies offer opportunities to improve water treatment[J]. Accounts of Chemical Research,2019,52(5):1196-1205. doi: 10.1021/acs.accounts.8b00606
    [9] 洪涛, 叶春, 李春华, 等.微米气泡曝气技术处理黑臭河水的效果研究[J]. 环境工程技术学报,2011,1(1):20-25. doi: 10.3969/j.issn.1674-991X.2011.01.004

    HONG T, YE C, LI C H, et al. Treatment effect of microbubble aeration technology on black-odor river water[J]. Journal of Environmental Engineering Technology,2011,1(1):20-25. doi: 10.3969/j.issn.1674-991X.2011.01.004
    [10] 丁路明, 王兴林, 于海洋, 等. 臭氧微纳米气泡特性及在水处理中的研究[C]//中国环境科学学会2021年科学技术年会: 环境工程技术创新与应用分会场.天津: 中国环境科学学会, 2021.
    [11] KOBYA M, CAN O T, BAYRAMOGLU M. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J]. Journal of Hazardous Materials,2003,100(1/2/3):163-178.
    [12] 张瑞, 赵霞, 李庆维, 等.电化学水处理技术的研究及应用进展[J]. 水处理技术,2019,45(4):11-16. doi: 10.16796/j.cnki.1000-3770.2019.04.003

    ZHANG R, ZHAO X, LI Q W, et al. Research and application progress of electrochemical technology in wastewater treatment[J]. Technology of Water Treatment,2019,45(4):11-16. doi: 10.16796/j.cnki.1000-3770.2019.04.003
    [13] BILIŃSKA L, BLUS K, GMUREK M, et al. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse[J]. Chemical Engineering Journal,2019,358:992-1001. doi: 10.1016/j.cej.2018.10.093
    [14] TORRES-SA´NCHEZ A L, LO´PEZ-CERVERA S J, ROSA C, et al. Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater[J]. International Journal of Electrochemical Science,2014,9(11):6103-6112.
    [15] GHERNAOUT D, NACEUR M W, GHERNAOUT B. A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation[J]. Desalination and Water Treatment,2011,28(1/2/3):287-320.
    [16] DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters[J]. Journal of Hazardous Materials,2006,129(1/2/3):116-122.
    [17] BAYRAMOGLU M, KOBYA M, CAN O T, et al. Operating cost analysis of electrocoagulation of textile dye wastewater[J]. Separation and Purification Technology,2004,37(2):117-125. doi: 10.1016/j.seppur.2003.09.002
    [18] KOBYA M, DEMIRBAS E, CAN O T, et al. Treatment of levafix orange textile dye solution by electrocoagulation[J]. Journal of Hazardous Materials,2006,132(2/3):183-188.
    [19] CHEN X M, CHEN G H, YUE P L. Investigation on the electrolysis voltage of electrocoagulation[J]. Chemical Engineering Science,2002,57(13):2449-2455. doi: 10.1016/S0009-2509(02)00147-1
    [20] CALVO L S, LECLERC J P, TANGUY G, et al. An electrocoagulation unit for the purification of soluble oil wastes of high COD[J]. Environmental Progress,2003,22(1):57-65. doi: 10.1002/ep.670220117
    [21] ALINSAFI A, KHEMIS M, PONS M N, et al. Electro-coagulation of reactive textile dyes and textile wastewater[J]. Chemical Engineering and Processing:Process Intensification,2005,44(4):461-470. doi: 10.1016/j.cep.2004.06.010
    [22] ALATON I A, BALCIOGLU I A, BAHNEMANN D W. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes[J]. Water Research,2002,36(5):1143-1154. doi: 10.1016/S0043-1354(01)00335-9
    [23] AZBAR N, YONAR T, KESTIOGLU K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent[J]. Chemosphere,2004,55(1):35-43. ⊗ doi: 10.1016/j.chemosphere.2003.10.046
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  321
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14

目录

    /

    返回文章
    返回