留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中试SBR处理鸭场沼液过程中脱氮除碳效能及微生物群落演替

文红平 杨小明 成郁楠 刘梦雪 罗子锋 李强 李永涛 张振

文红平,杨小明,成郁楠,等.中试SBR处理鸭场沼液过程中脱氮除碳效能及微生物群落演替[J].环境工程技术学报,2023,13(2):669-678 doi: 10.12153/j.issn.1674-991X.20220057
引用本文: 文红平,杨小明,成郁楠,等.中试SBR处理鸭场沼液过程中脱氮除碳效能及微生物群落演替[J].环境工程技术学报,2023,13(2):669-678 doi: 10.12153/j.issn.1674-991X.20220057
WEN H P,YANG X M,CHENG Y N,et al.Performance of a pilot-scale sequential batch reactor (SBR) on nitrogen and carbon removals and its characteristics of microbial community succession from biogas slurry from duck farm[J].Journal of Environmental Engineering Technology,2023,13(2):669-678 doi: 10.12153/j.issn.1674-991X.20220057
Citation: WEN H P,YANG X M,CHENG Y N,et al.Performance of a pilot-scale sequential batch reactor (SBR) on nitrogen and carbon removals and its characteristics of microbial community succession from biogas slurry from duck farm[J].Journal of Environmental Engineering Technology,2023,13(2):669-678 doi: 10.12153/j.issn.1674-991X.20220057

中试SBR处理鸭场沼液过程中脱氮除碳效能及微生物群落演替

doi: 10.12153/j.issn.1674-991X.20220057
基金项目: 2022年乡村振兴战略专项资金省级项目(440000220000000035282);温氏股份科技重点项目(WENS-2020-1-ZDHB-006)
详细信息
    作者简介:

    文红平(1994—),男,硕士研究生,从事环境污染控制与生态修复研究,1948277289@qq.com

    通讯作者:

    张振(1986—),男,副教授,博士,主要从事养殖废水及农村生活污水处理研究,zzhangal@scau.edu.cn

  • 中图分类号: X703

Performance of a pilot-scale sequential batch reactor (SBR) on nitrogen and carbon removals and its characteristics of microbial community succession from biogas slurry from duck farm

  • 摘要:

    通过在鸭场搭建中试规模的序批式反应器( SBR),以稀释鸭场沼液作为进水,并用蔗糖调节进水COD,评估SBR处理鸭场沼液过程中的脱氮除碳效能和微生物群落演替。结果表明:阶段Ⅰ(1~20 d)为污泥接种及水质适应阶段,进水碳氮比(C/N)小于2,COD和NH4 +-N浓度约为200 mg/L,COD和NH4 +-N去除率在第8天分别达到80%和90%;阶段Ⅱ(21~55 d)为系统稳定运行阶段,进水C/N小于2,COD和NH4 +-N浓度分别为200~500、200~400 mg/L,COD去除率约为60%,NH4 +-N去除率超过80%;阶段Ⅲ(56~95 d)为模拟有机物浓度变化阶段,进水C/N为1.2~5.5,COD和NH4 +-N浓度分别为300~1 400、150~400 mg/L,COD和NH4 +-N的去除率均大于80%,同时发现低温是SBR脱氮除碳的主要限制因素之一。通过微生物16S rRNA全长测序发现,Proteobacteria和Gammaproteobacteria分别为系统中门和纲水平下的优势微生物菌群。从属水平分析,试验期间系统内微生物发生了明显演替,在运行稳定后均形成了具有脱氮除碳功能的优势微生物群落。表明SBR可以实现对低C/N鸭场沼液的高效脱氮除碳,对高NH4 +-N浓度和低C/N的鸭场沼液具有较好的应用潜力。

     

  • 图  1  SBR中试系统

    Figure  1.  Pilot-scale SBR system

    图  2  SBR内MLSS、MLVSS、MLVSS/MLSS以及SVI30变化

    Figure  2.  Changes of MLSS, MLVSS, MLVSS/MLSS and SVI30 in pilot-scale SBR

    图  3  SBR进水和出水COD、BOD5及去除率

    Figure  3.  Concentration and removal rate of COD, BOD5 in influent and effluent in pilot-scale SBR

    图  4  SBR内进水和出水TN、NH4 +-N 浓度及去除率

    Figure  4.  Concentration and removal rate of TN, NH4 +-N in influent and effluent in pilot-scale SBR

    图  5  SBR中COD和NH4 +-N 比氧化速率变化

    Figure  5.  Change of specific oxidation rate of COD and NH4 +-N in pilot-scale SBR

    图  6  SBR中门和纲水平下的微生物群落结构

    Figure  6.  Microbial community structure at the level of phylum and class in pilot-scale SBR

    表  1  SBR中试系统不同阶段反应温度及进水水质

    Table  1.   Reaction temperature and influent water quality in different stages of pilot-scale SBR system

    阶段时间/d温度/℃pHCOD/(mg/L)NH4 +-N浓度/(mg/L)C/N
    1~2026.0~29.07.7~8.22002000.8~1.5
    21~5525.0~27.08.0~9.25100~500200~4000.8~1.5
    56~957.0~25.08.5~9.25300~1 400150~4001.2~5.5
    下载: 导出CSV

    表  2  微生物Alpha多样性指数统计

    Table  2.   Statistics of microbial Alpha diversity index

    样品OTUsACE指数Chao指数Shannon指数Simpson指数
    D1261331.68353.884.540.019
    D20448546.39553.054.400.038
    D55463605.65674.524.180.067
    D701 8211827.271821.096.700.005
    D90342478.24476.644.250.031
    下载: 导出CSV

    表  3  微生物属水平优势细菌结构占比和功能

    Table  3.   Structure proportion and function of dominant bacteria at microbial genus level

    属水平微生物占比/%功能
    D1D20D55D70D90
    Enterococcus0.10.00.010.01.7病原微生物[27]
    Pseudoxanthomonas0.10.40.12.15.5反硝化作用[28]
    Paracoccus0.70.20.50.42.2反硝化作用/降解难降解有机物[28]
    Thauera0.126.15.412.228.1反硝化作用/降解难降解有机物/胞外聚合物生产[28-29]
    Flavobacterium0.00.00.00.44.9胞外聚合物生产/反硝化作用[28-29]
    Nitrosomonas1.23.24.51.60.0氨氧化作用[28-29]
    Nitrospira2.65.54.911.00.2硝化作用[28-29]
    Stenotrophomonas1.94.327.72.24.8反硝化聚磷作用[29]
    Terrimonas1.64.31.91.60.1反硝化作用[29]
    Gemmobacter0.00.10.20.22.7反硝化作用[30]
    Luteimonas0.00.00.10.55.0降解难降解有机物[31]
    Planctomicrobium0.00.00.00.02.2反硝化作用/降解难降解有机物[32]
    Saprospiraceae_uncultured4.20.70.10.10.0反硝化作用/降解难降解有机物[33]
    Blastocatellaceae_uncultured4.34.11.01.30.1氧化硫化氢[33]
    Dechloromonas3.30.20.10.00.0反硝化除磷作用[33]
    Candidatus Competibacter10.30.50.10.10.0聚糖作用[34]
    C10-SB1A_norank2.20.20.00.00.0
    Diaphorobacter0.00.61.42.30.7反硝化作用[35]
    Ellin60672.41.20.30.70.0氨氧化作用[36]
    Fastidiosipila2.10.60.20.10.0降解难降解有机物[37]
    Ferruginibacter0.94.22.31.41.2聚磷作用[38]
    Hyphomicrobiaceae_uncultured2.20.30.10.10.0胞外聚合物生产[38]
    IMCC262072.40.70.30.10.0
    Limnobacter2.22.31.51.60.8降解难降解有机物[39]
    Mariniflexile0.00.00.00.04.1
    Ottowia3.79.614.37.22.3反硝化作用/降解难降解有机物[40]
    RBG-13-54-9_norank2.70.10.00.00.0
    Rikenellaceae RC9 gut group5.10.10.00.00.0降解难降解有机物[41]
    SC-I-84_norank10.14.63.43.20.2
    Sphingomonas0.90.52.80.10.5降解难降解有机物[42]
    Thermomonas0.62.50.91.30.3反硝化作用[43-44]
    Trichococcus0.00.00.04.48.9胞外聚合物生产[45]
    下载: 导出CSV
  • [1] 董婧, 卢少奇, 伍娟丽, 等.进水方式对处理分散养猪冲洗废水ABR反应器微生物群落结构的影响[J]. 环境工程技术学报,2022,12(3):744-752. doi: 10.12153/j.issn.1674-991X.20210148

    DONG J, LU S Q, WU J L, et al. Effects of influent mode on the microbial community structure in anaerobic baffled reactor during the treatment of dispersed swine flushing wastewater[J]. Journal of Environmental Engineering Technology,2022,12(3):744-752. doi: 10.12153/j.issn.1674-991X.20210148
    [2] 武淑霞, 刘宏斌, 黄宏坤, 等.我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学,2018,20(5):103-111.

    WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE,2018,20(5):103-111.
    [3] 苗莹, 沈志强, 周岳溪, 等.功能分区型人工湿地处理养殖废水厌氧消化液的性能[J]. 环境科学研究,2016,29(7):1075-1082. doi: 10.13198/j.issn.1001-6929.2016.07.16

    MIAO Y, SHEN Z Q, ZHOU Y X, et al. Performance of a functional zoning constructed wetland for the treatment of digested swine wastewater[J]. Research of Environmental Sciences,2016,29(7):1075-1082. doi: 10.13198/j.issn.1001-6929.2016.07.16
    [4] QIAN Y, SONG K H, HU T, et al. Environmental status of livestock and poultry sectors in China under current transformation stage[J]. Science of the Total Environment,2018,622/623:702-709. doi: 10.1016/j.scitotenv.2017.12.045
    [5] HU Y A, CHENG H F, TAO S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International,2017,107:111-130. doi: 10.1016/j.envint.2017.07.003
    [6] 生态环境部, 国家统计局, 农业农村部. 全国第二污染源普查公报[R]. 北京: 生态环境部, 2020.
    [7] HAN Z Y, WANG L, DUAN L, et al. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration[J]. Separation and Purification Technology,2015,156:817-826. doi: 10.1016/j.seppur.2015.10.054
    [8] 冯文谦, 史金才, 练植婵, 等.养殖废水处理设施自动化智能化运营与管控[J]. 农业环境科学学报,2021,40(11):2355-2360. doi: 10.11654/jaes.2021-1153

    FENG W Q, SHI J C, LIAN Z C, et al. Automatic and intelligent operation of livestock breeding wastewater treatment facilities[J]. Journal of Agro-Environment Science,2021,40(11):2355-2360. doi: 10.11654/jaes.2021-1153
    [9] 王兰, 邓良伟, 王霜, 等.畜禽养殖废水厌氧消化液好氧处理研究与应用现状[J]. 中国沼气,2015,33(5):3-10. doi: 10.3969/j.issn.1000-1166.2015.05.001

    WANG L, DENG L W, WANG S, et al. Research and application status of aerobic treatment for the anaerobic effluent of animal wastewater: a review[J]. China Biogas,2015,33(5):3-10. doi: 10.3969/j.issn.1000-1166.2015.05.001
    [10] 张书一, 陆永生, 乔磊, 等.铁碳床-SBR耦合优化工艺处理屠宰废水实验研究[J]. 工业水处理,2021,41(8):65-69.

    ZHANG S Y, LU Y S, QIAO L, et al. Treatment of slaughter wastewater using iron-carbon bed-SBR coupling process[J]. Industrial Water Treatment,2021,41(8):65-69.
    [11] 周明俊, 于鹏飞, 傅金祥, 等.混凝气浮-UASB-SBR耦合工艺处理屠宰废水[J]. 水处理技术,2016,42(3):116-120.

    ZHOU M J, YU P F, FU J X, et al. Coagulation air floatation-UASB-SBR coupling factors influencing slaughterhouse wastewater treatment process and effect research[J]. Technology of Water Treatment,2016,42(3):116-120.
    [12] 杜龑, 周北海, 袁蓉芳, 等.UASB-SBR工艺处理规模化畜禽养殖废水[J]. 环境工程学报,2018,12(2):497-504. doi: 10.12030/j.cjee.201708147

    DU Y, ZHOU B H, YUAN R F, et al. Treatment of large-scale livestock wastewater by UASB-SBR process[J]. Chinese Journal of Environmental Engineering,2018,12(2):497-504. doi: 10.12030/j.cjee.201708147
    [13] 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [14] 李冬, 刘博, 王文琪, 等.除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺[J]. 环境科学,2020,41(2):867-875.

    LI D, LIU B, WANG W Q, et al. Simultaneous short-cut nitrification-denitrification phosphorus removal granules induced by phosphorus removal granules[J]. Environmental Science,2020,41(2):867-875.
    [15] 赵霞, 冯辉霞, 雒和明, 等.C/N比对好氧颗粒污泥性能的影响[J]. 环境工程学报,2012,6(11):3928-3932.

    ZHAO X, FENG H X, LUO H M, et al. Effect of C/N ratio on properties of aerobic granular sludge[J]. Chinese Journal of Environmental Engineering,2012,6(11):3928-3932.
    [16] 王晓霞, 甄建园, 赵骥, 等.不同污泥龄(SRT)对SNEDPR系统脱氮除磷影响[J]. 环境科学,2019,40(1):352-359.

    WANG X X, ZHEN J Y, ZHAO J, et al. Effect of different sludge retention time (SRT) operations on the nutrient removal characteristics of a SNEDPR system[J]. Environmental Science,2019,40(1):352-359.
    [17] 魏思佳, 于德爽, 李津, 等.厌氧氨氧化与反硝化耦合脱氮除碳研究: Ⅰ. COD/NH4+-N对耦合反应的影响[J]. 中国环境科学,2016,36(3):759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019

    WEI S J, YU D S, LI J, et al. Simultaneous carbon and nitrogen removal by anaerobic ammonium oxidation and denitrification: Ⅰ. effect of COD/NH4+-N on coupled reaction[J]. China Environmental Science,2016,36(3):759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019
    [18] GUO J H, PENG Y Z, HUANG H J, et al. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials,2010,179(1/2/3):471-479.
    [19] 陈翰, 马放, 李昂, 等.低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水,2016,32(8):37-43.

    CHEN H, MA F, LI A, et al. Research progress in biological nitrogen removal from wastewater under low temperature condition[J]. China Water & Wastewater,2016,32(8):37-43.
    [20] 端正花, 潘留明, 陈晓欧, 等.低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学,2016,37(3):1070-1074. doi: 10.13227/j.hjkx.2016.03.036

    DUAN Z H, PAN L M, CHEN X O, et al. Changes of microbial community structure in activated sludge bulking at low temperature[J]. Environmental Science,2016,37(3):1070-1074. doi: 10.13227/j.hjkx.2016.03.036
    [21] 王坤, 柯水洲, 袁辉洲, 等.氨氮浓度对MBBR工艺中微生物群落结构的影响[J]. 环境工程,2020,38(9):119-125.

    WANG K, KE S Z, YUAN H Z, et al. Effect of ammonia-nitrogen concentration on microbial community structure in a MBBR process[J]. Environmental Engineering,2020,38(9):119-125.
    [22] 秦嘉伟, 信欣, 鲁航, 等.连续流SNAD工艺处理猪场沼液启动过程中微生物种群演变及脱氮性能[J]. 环境科学,2020,41(5):2349-2357.

    QIN J W, XIN X, LU H, et al. Bacterial community shifts and nitrogen removal characteristics for a SNAD process treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor (CFBR)[J]. Environmental Science,2020,41(5):2349-2357.
    [23] 李思敏. 污水厂二级出水深度处理O3+MBSF工艺及微生物群落结构特性研究[D]. 太原: 太原理工大学, 2016.
    [24] 曾涛涛, 蒋小梅, 韩科昌, 等.生活污水处理厂微生物群落结构解析[J]. 安全与环境学报,2018,18(2):697-703.

    ZENG T T, JIANG X M, HAN K C, et al. Analysis of microbial community constituent composition of some sewage treatment and processing plant[J]. Journal of Safety and Environment,2018,18(2):697-703.
    [25] CHEN Y, WANG L, MA F, et al. Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2014,69(9):1788-1797. doi: 10.2166/wst.2014.002
    [26] 酒卫敬, 汪苹, 岳建伟.好氧反硝化菌处理高浓度氨氮废水研究[J]. 环境工程技术学报,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019

    JIU W J, WANG P, YUE J W. Study on the treatment of wastewater containing high-concentration ammonia nitrogen with aerobic denitrifying bacteria[J]. Journal of Environmental Engineering Technology,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019
    [27] 王宠, 郑琳琳, 王在峰.生态环境监测实验室生物安全风险因子分析及防控措施[J]. 环境与发展,2021,33(2):157-164.

    WANG C, ZHENG L L, WANG Z F. Analysis of biological risk factors in ecological environment monitoring laboratory and control measures[J]. Environment and Development,2021,33(2):157-164.
    [28] XIA J T, YE L, REN H Q, et al. Microbial community structure and function in aerobic granular sludge[J]. Applied Microbiology and Biotechnology,2018,102(9):3967-3979. doi: 10.1007/s00253-018-8905-9
    [29] YU C, WANG K J, TIAN C, et al. Aerobic granular sludge treating low-strength municipal wastewater: efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment[J]. Science of the Total Environment,2021,792:148297. doi: 10.1016/j.scitotenv.2021.148297
    [30] 王思宇, 李军, 王秀杰, 等.添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030

    WANG S Y, LI J, WANG X J, et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030
    [31] JIANG Z W, LU Y Y, XU J Q, et al. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting[J]. Bioresource Technology,2019,292:121942. doi: 10.1016/j.biortech.2019.121942
    [32] 郑杰蓉, 汪素芳, 赵晓婵, 等.厌氧反硝化体系对磺胺嘧啶的共代谢降解特性[J]. 科学技术与工程,2020,20(35):14760-14766. doi: 10.3969/j.issn.1671-1815.2020.35.060

    ZHENG J R, WANG S F, ZHAO X C, et al. Co-metabolic degradation characteristics of sulfadiazine in nitrate anaerobic denitrifying system[J]. Science Technology and Engineering,2020,20(35):14760-14766. doi: 10.3969/j.issn.1671-1815.2020.35.060
    [33] 张晓红, 姜博, 张文武, 等.京津冀区域市政污水厂活性污泥种群结构的多样性及差异[J]. 微生物学通报,2019,46(8):1896-1906.

    ZHANG X H, JIANG B, ZHANG W W, et al. Microbial community diversity of activated sludge from municipal wastewater treatment plants in Beijing-Tianjin-Hebei region[J]. Microbiology China,2019,46(8):1896-1906.
    [34] 高景峰, 王时杰, 樊晓燕, 等.同步脱氮除磷好氧颗粒污泥培养过程微生物群落变化[J]. 环境科学,2017,38(11):4696-4705.

    GAO J F, WANG S J, FAN X Y, et al. Microbial population dynamics during sludge granulation in a simultaneous nitrogen and phosphorus removal system[J]. Environmental Science,2017,38(11):4696-4705.
    [35] 许涛, 王国英, 岳秀萍.Diaphorobacter sp. PDB3菌好氧反硝化脱氮特性[J]. 中国环境科学,2018,38(6):2321-2328. doi: 10.3969/j.issn.1000-6923.2018.06.036

    XU T, WANG G, YU X P et al. The nitrogen removal characteristics of aerobic denitrification by Diaphorobacter sp. PDB3[J]. China Environmental Science,2018,38(6):2321-2328. doi: 10.3969/j.issn.1000-6923.2018.06.036
    [36] PAN K L, GAO J F, LI H Y, et al. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing[J]. Bioresource Technology,2018,256:152-159. doi: 10.1016/j.biortech.2018.02.012
    [37] 何琴, 李蕾, 瞿莉, 等.餐厨垃圾干式厌氧消化污泥膨胀微生态特征[J]. 中国环境科学,2018,38(3):1010-1017. doi: 10.3969/j.issn.1000-6923.2018.03.026

    HE Q, LI L, QU L, et al. Microbial characteristics of bulking sludge in high-solids anaerobic digestion of kitchen waste[J]. China Environmental Science,2018,38(3):1010-1017. doi: 10.3969/j.issn.1000-6923.2018.03.026
    [38] 季斌, 陈威, 樊杰, 等.好氧颗粒污泥的微生物研究进展[J]. 科学通报,2017,62(23):2639-2648. doi: 10.1360/N972016-01192

    JI B, CHEN W, FAN J, et al. Research progress on microbes in aerobic granular sludge[J]. Chinese Science Bulletin,2017,62(23):2639-2648. doi: 10.1360/N972016-01192
    [39] 徐芯渝, 李伟民, 叶姜瑜.光合细菌强化SBR系统处理垃圾渗滤液及生物群落结构分析[J]. 环境工程,2020,38(1):99-104.

    XU X Y, LI W M, YE J Y. Treatment of landfill leachate by photosynthetic bacteria in SBR system and analysis on biological community structure[J]. Environmental Engineering,2020,38(1):99-104.
    [40] FELFÖLDI T, KÉKI Z, SIPOS R, et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 9): 2146-2150.
    [41] 戴晓虎, 何进, 严寒, 等.游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学,2017,38(2):679-687.

    DAI X H, HE J, YAN H, et al. Effects of free ammonia regulation on the performance of high solid anaerobic digesters with dewatered sludge[J]. Environmental Science,2017,38(2):679-687.
    [42] SONG L C, NIU X G, ZHANG N W, et al. Effect of biochar-immobilized Sphingomonas sp. PJ2 on bioremediation of PAHs and bacterial community composition in saline soil[J]. Chemosphere,2021,279:130427. doi: 10.1016/j.chemosphere.2021.130427
    [43] WU X T, HE Y Q, LI G X, et al. Genome sequence of sulfide-dependent denitrification bacterium Thermomonas sp. strain XSG, isolated from marine sediment[J]. Microbiology Resource Announcements,2021,10(15):e00057.
    [44] 杨宏, 徐富, 孟琛, 等.包埋活性污泥反硝化性能的快速提高及群落分析[J]. 环境科学,2018,39(10):4661-4669.

    YANG H, XU F, MENG C, et al. Rapid improvement of denitrification performance of embedded activated sludge and community analysis[J]. Environmental Science,2018,39(10):4661-4669.
    [45] CHENG W J, ZHANG L G, XU W J, et al. Formation and characteristics of filamentous granular sludge[J]. Water Science & Technology,2020,82(2):364-372. ⊗
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  134
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20

目录

    /

    返回文章
    返回