Performance of a pilot-scale sequential batch reactor (SBR) on nitrogen and carbon removals and its characteristics of microbial community succession from biogas slurry from duck farm
-
摘要:
通过在鸭场搭建中试规模的序批式反应器( SBR),以稀释鸭场沼液作为进水,并用蔗糖调节进水COD,评估SBR处理鸭场沼液过程中的脱氮除碳效能和微生物群落演替。结果表明:阶段Ⅰ(1~20 d)为污泥接种及水质适应阶段,进水碳氮比(C/N)小于2,COD和NH4 +-N浓度约为200 mg/L,COD和NH4 +-N去除率在第8天分别达到80%和90%;阶段Ⅱ(21~55 d)为系统稳定运行阶段,进水C/N小于2,COD和NH4 +-N浓度分别为200~500、200~400 mg/L,COD去除率约为60%,NH4 +-N去除率超过80%;阶段Ⅲ(56~95 d)为模拟有机物浓度变化阶段,进水C/N为1.2~5.5,COD和NH4 +-N浓度分别为300~1 400、150~400 mg/L,COD和NH4 +-N的去除率均大于80%,同时发现低温是SBR脱氮除碳的主要限制因素之一。通过微生物16S rRNA全长测序发现,Proteobacteria和Gammaproteobacteria分别为系统中门和纲水平下的优势微生物菌群。从属水平分析,试验期间系统内微生物发生了明显演替,在运行稳定后均形成了具有脱氮除碳功能的优势微生物群落。表明SBR可以实现对低C/N鸭场沼液的高效脱氮除碳,对高NH4 +-N浓度和低C/N的鸭场沼液具有较好的应用潜力。
Abstract:A pilot-scale sequential batch reactor (SBR) was built in the duck farm, the duck farm biogas slurry was diluted as the influent, and the influent COD was regulated with sucrose, to evaluate the efficiency of nitrogen and carbon removal and the microbial community succession in the process of SBR treating the biogas slurry of the duck farm. The results showed that Stage Ⅰ (1-20 d) was the sludge inoculation and water quality adaptation stage, in which the influent C/N was controlled to be less than 2, and the concentrations of COD and NH4 +-N were around 200 mg/L. It was found that the removal efficiencies of COD and NH4 +-N rapidly increased to 80% and 90%, respectively, within the first 8th day. Stage Ⅱ (21-55 d) was the stabilization stage, in which C/N of the influent was also less than 2, and the concentrations of COD and NH4 +-N were 200-500 and 200-400 mg/L, respectively. In this stage, the removal efficiencies of COD were fluctuated around 60%, while the removal efficiencies of NH4 +-N were more than 80%. Stage Ⅲ (56-95 d) was the simulation stage for organic concentration change, in which C/N of the influent was in the range of 1.2 to 5.5, while the influent COD and NH4 +-N concentrations were 300-1 400 and 150-400 mg/L, respectively, and the removal rate of COD and NH4 +-N was greater than 80% in this stage. Meanwhile, low temperature was one of the main limiting factors for SBR nitrogen and carbon removal. Full-length sequencing of 16S rRNA from microorganisms revealed that Proteobacteria and Gammaproteobacteria were the dominant microbial flora at the phylum and class levels in the system, respectively. A significant shift of microbial community in terms of genus level was detected. The dominant microbial community species with nitrogen and carbon removal functions were formed after the operation stabilization. In general, SBR could achieve efficient nitrogen and carbon removal and had promising application potential in the real practice of treating biogas slurry from duck farm with a characteristics of high COD concentration and low C/N.
-
表 1 SBR中试系统不同阶段反应温度及进水水质
Table 1. Reaction temperature and influent water quality in different stages of pilot-scale SBR system
阶段 时间/d 温度/℃ pH COD/(mg/L) NH4 +-N浓度/(mg/L) C/N Ⅰ 1~20 26.0~29.0 7.7~8.2 200 200 0.8~1.5 Ⅱ 21~55 25.0~27.0 8.0~9.25 100~500 200~400 0.8~1.5 Ⅲ 56~95 7.0~25.0 8.5~9.25 300~1 400 150~400 1.2~5.5 表 2 微生物Alpha多样性指数统计
Table 2. Statistics of microbial Alpha diversity index
样品 OTUs ACE指数 Chao指数 Shannon指数 Simpson指数 D1 261 331.68 353.88 4.54 0.019 D20 448 546.39 553.05 4.40 0.038 D55 463 605.65 674.52 4.18 0.067 D70 1 821 1827.27 1821.09 6.70 0.005 D90 342 478.24 476.64 4.25 0.031 表 3 微生物属水平优势细菌结构占比和功能
Table 3. Structure proportion and function of dominant bacteria at microbial genus level
属水平微生物 占比/% 功能 D1 D20 D55 D70 D90 Enterococcus 0.1 0.0 0.0 10.0 1.7 病原微生物[27] Pseudoxanthomonas 0.1 0.4 0.1 2.1 5.5 反硝化作用[28] Paracoccus 0.7 0.2 0.5 0.4 2.2 反硝化作用/降解难降解有机物[28] Thauera 0.1 26.1 5.4 12.2 28.1 反硝化作用/降解难降解有机物/胞外聚合物生产[28-29] Flavobacterium 0.0 0.0 0.0 0.4 4.9 胞外聚合物生产/反硝化作用[28-29] Nitrosomonas 1.2 3.2 4.5 1.6 0.0 氨氧化作用[28-29] Nitrospira 2.6 5.5 4.9 11.0 0.2 硝化作用[28-29] Stenotrophomonas 1.9 4.3 27.7 2.2 4.8 反硝化聚磷作用[29] Terrimonas 1.6 4.3 1.9 1.6 0.1 反硝化作用[29] Gemmobacter 0.0 0.1 0.2 0.2 2.7 反硝化作用[30] Luteimonas 0.0 0.0 0.1 0.5 5.0 降解难降解有机物[31] Planctomicrobium 0.0 0.0 0.0 0.0 2.2 反硝化作用/降解难降解有机物[32] Saprospiraceae_uncultured 4.2 0.7 0.1 0.1 0.0 反硝化作用/降解难降解有机物[33] Blastocatellaceae_uncultured 4.3 4.1 1.0 1.3 0.1 氧化硫化氢[33] Dechloromonas 3.3 0.2 0.1 0.0 0.0 反硝化除磷作用[33] Candidatus Competibacter 10.3 0.5 0.1 0.1 0.0 聚糖作用[34] C10-SB1A_norank 2.2 0.2 0.0 0.0 0.0 Diaphorobacter 0.0 0.6 1.4 2.3 0.7 反硝化作用[35] Ellin6067 2.4 1.2 0.3 0.7 0.0 氨氧化作用[36] Fastidiosipila 2.1 0.6 0.2 0.1 0.0 降解难降解有机物[37] Ferruginibacter 0.9 4.2 2.3 1.4 1.2 聚磷作用[38] Hyphomicrobiaceae_uncultured 2.2 0.3 0.1 0.1 0.0 胞外聚合物生产[38] IMCC26207 2.4 0.7 0.3 0.1 0.0 Limnobacter 2.2 2.3 1.5 1.6 0.8 降解难降解有机物[39] Mariniflexile 0.0 0.0 0.0 0.0 4.1 Ottowia 3.7 9.6 14.3 7.2 2.3 反硝化作用/降解难降解有机物[40] RBG-13-54-9_norank 2.7 0.1 0.0 0.0 0.0 Rikenellaceae RC9 gut group 5.1 0.1 0.0 0.0 0.0 降解难降解有机物[41] SC-I-84_norank 10.1 4.6 3.4 3.2 0.2 Sphingomonas 0.9 0.5 2.8 0.1 0.5 降解难降解有机物[42] Thermomonas 0.6 2.5 0.9 1.3 0.3 反硝化作用[43-44] Trichococcus 0.0 0.0 0.0 4.4 8.9 胞外聚合物生产[45] -
[1] 董婧, 卢少奇, 伍娟丽, 等.进水方式对处理分散养猪冲洗废水ABR反应器微生物群落结构的影响[J]. 环境工程技术学报,2022,12(3):744-752. doi: 10.12153/j.issn.1674-991X.20210148DONG J, LU S Q, WU J L, et al. Effects of influent mode on the microbial community structure in anaerobic baffled reactor during the treatment of dispersed swine flushing wastewater[J]. Journal of Environmental Engineering Technology,2022,12(3):744-752. doi: 10.12153/j.issn.1674-991X.20210148 [2] 武淑霞, 刘宏斌, 黄宏坤, 等.我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学,2018,20(5):103-111.WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE,2018,20(5):103-111. [3] 苗莹, 沈志强, 周岳溪, 等.功能分区型人工湿地处理养殖废水厌氧消化液的性能[J]. 环境科学研究,2016,29(7):1075-1082. doi: 10.13198/j.issn.1001-6929.2016.07.16MIAO Y, SHEN Z Q, ZHOU Y X, et al. Performance of a functional zoning constructed wetland for the treatment of digested swine wastewater[J]. Research of Environmental Sciences,2016,29(7):1075-1082. doi: 10.13198/j.issn.1001-6929.2016.07.16 [4] QIAN Y, SONG K H, HU T, et al. Environmental status of livestock and poultry sectors in China under current transformation stage[J]. Science of the Total Environment,2018,622/623:702-709. doi: 10.1016/j.scitotenv.2017.12.045 [5] HU Y A, CHENG H F, TAO S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International,2017,107:111-130. doi: 10.1016/j.envint.2017.07.003 [6] 生态环境部, 国家统计局, 农业农村部. 全国第二污染源普查公报[R]. 北京: 生态环境部, 2020. [7] HAN Z Y, WANG L, DUAN L, et al. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration[J]. Separation and Purification Technology,2015,156:817-826. doi: 10.1016/j.seppur.2015.10.054 [8] 冯文谦, 史金才, 练植婵, 等.养殖废水处理设施自动化智能化运营与管控[J]. 农业环境科学学报,2021,40(11):2355-2360. doi: 10.11654/jaes.2021-1153FENG W Q, SHI J C, LIAN Z C, et al. Automatic and intelligent operation of livestock breeding wastewater treatment facilities[J]. Journal of Agro-Environment Science,2021,40(11):2355-2360. doi: 10.11654/jaes.2021-1153 [9] 王兰, 邓良伟, 王霜, 等.畜禽养殖废水厌氧消化液好氧处理研究与应用现状[J]. 中国沼气,2015,33(5):3-10. doi: 10.3969/j.issn.1000-1166.2015.05.001WANG L, DENG L W, WANG S, et al. Research and application status of aerobic treatment for the anaerobic effluent of animal wastewater: a review[J]. China Biogas,2015,33(5):3-10. doi: 10.3969/j.issn.1000-1166.2015.05.001 [10] 张书一, 陆永生, 乔磊, 等.铁碳床-SBR耦合优化工艺处理屠宰废水实验研究[J]. 工业水处理,2021,41(8):65-69.ZHANG S Y, LU Y S, QIAO L, et al. Treatment of slaughter wastewater using iron-carbon bed-SBR coupling process[J]. Industrial Water Treatment,2021,41(8):65-69. [11] 周明俊, 于鹏飞, 傅金祥, 等.混凝气浮-UASB-SBR耦合工艺处理屠宰废水[J]. 水处理技术,2016,42(3):116-120.ZHOU M J, YU P F, FU J X, et al. Coagulation air floatation-UASB-SBR coupling factors influencing slaughterhouse wastewater treatment process and effect research[J]. Technology of Water Treatment,2016,42(3):116-120. [12] 杜龑, 周北海, 袁蓉芳, 等.UASB-SBR工艺处理规模化畜禽养殖废水[J]. 环境工程学报,2018,12(2):497-504. doi: 10.12030/j.cjee.201708147DU Y, ZHOU B H, YUAN R F, et al. Treatment of large-scale livestock wastewater by UASB-SBR process[J]. Chinese Journal of Environmental Engineering,2018,12(2):497-504. doi: 10.12030/j.cjee.201708147 [13] 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] 李冬, 刘博, 王文琪, 等.除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺[J]. 环境科学,2020,41(2):867-875.LI D, LIU B, WANG W Q, et al. Simultaneous short-cut nitrification-denitrification phosphorus removal granules induced by phosphorus removal granules[J]. Environmental Science,2020,41(2):867-875. [15] 赵霞, 冯辉霞, 雒和明, 等.C/N比对好氧颗粒污泥性能的影响[J]. 环境工程学报,2012,6(11):3928-3932.ZHAO X, FENG H X, LUO H M, et al. Effect of C/N ratio on properties of aerobic granular sludge[J]. Chinese Journal of Environmental Engineering,2012,6(11):3928-3932. [16] 王晓霞, 甄建园, 赵骥, 等.不同污泥龄(SRT)对SNEDPR系统脱氮除磷影响[J]. 环境科学,2019,40(1):352-359.WANG X X, ZHEN J Y, ZHAO J, et al. Effect of different sludge retention time (SRT) operations on the nutrient removal characteristics of a SNEDPR system[J]. Environmental Science,2019,40(1):352-359. [17] 魏思佳, 于德爽, 李津, 等.厌氧氨氧化与反硝化耦合脱氮除碳研究: Ⅰ. COD/NH4+-N对耦合反应的影响[J]. 中国环境科学,2016,36(3):759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019WEI S J, YU D S, LI J, et al. Simultaneous carbon and nitrogen removal by anaerobic ammonium oxidation and denitrification: Ⅰ. effect of COD/NH4+-N on coupled reaction[J]. China Environmental Science,2016,36(3):759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019 [18] GUO J H, PENG Y Z, HUANG H J, et al. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials,2010,179(1/2/3):471-479. [19] 陈翰, 马放, 李昂, 等.低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水,2016,32(8):37-43.CHEN H, MA F, LI A, et al. Research progress in biological nitrogen removal from wastewater under low temperature condition[J]. China Water & Wastewater,2016,32(8):37-43. [20] 端正花, 潘留明, 陈晓欧, 等.低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学,2016,37(3):1070-1074. doi: 10.13227/j.hjkx.2016.03.036DUAN Z H, PAN L M, CHEN X O, et al. Changes of microbial community structure in activated sludge bulking at low temperature[J]. Environmental Science,2016,37(3):1070-1074. doi: 10.13227/j.hjkx.2016.03.036 [21] 王坤, 柯水洲, 袁辉洲, 等.氨氮浓度对MBBR工艺中微生物群落结构的影响[J]. 环境工程,2020,38(9):119-125.WANG K, KE S Z, YUAN H Z, et al. Effect of ammonia-nitrogen concentration on microbial community structure in a MBBR process[J]. Environmental Engineering,2020,38(9):119-125. [22] 秦嘉伟, 信欣, 鲁航, 等.连续流SNAD工艺处理猪场沼液启动过程中微生物种群演变及脱氮性能[J]. 环境科学,2020,41(5):2349-2357.QIN J W, XIN X, LU H, et al. Bacterial community shifts and nitrogen removal characteristics for a SNAD process treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor (CFBR)[J]. Environmental Science,2020,41(5):2349-2357. [23] 李思敏. 污水厂二级出水深度处理O3+MBSF工艺及微生物群落结构特性研究[D]. 太原: 太原理工大学, 2016. [24] 曾涛涛, 蒋小梅, 韩科昌, 等.生活污水处理厂微生物群落结构解析[J]. 安全与环境学报,2018,18(2):697-703.ZENG T T, JIANG X M, HAN K C, et al. Analysis of microbial community constituent composition of some sewage treatment and processing plant[J]. Journal of Safety and Environment,2018,18(2):697-703. [25] CHEN Y, WANG L, MA F, et al. Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2014,69(9):1788-1797. doi: 10.2166/wst.2014.002 [26] 酒卫敬, 汪苹, 岳建伟.好氧反硝化菌处理高浓度氨氮废水研究[J]. 环境工程技术学报,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019JIU W J, WANG P, YUE J W. Study on the treatment of wastewater containing high-concentration ammonia nitrogen with aerobic denitrifying bacteria[J]. Journal of Environmental Engineering Technology,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019 [27] 王宠, 郑琳琳, 王在峰.生态环境监测实验室生物安全风险因子分析及防控措施[J]. 环境与发展,2021,33(2):157-164.WANG C, ZHENG L L, WANG Z F. Analysis of biological risk factors in ecological environment monitoring laboratory and control measures[J]. Environment and Development,2021,33(2):157-164. [28] XIA J T, YE L, REN H Q, et al. Microbial community structure and function in aerobic granular sludge[J]. Applied Microbiology and Biotechnology,2018,102(9):3967-3979. doi: 10.1007/s00253-018-8905-9 [29] YU C, WANG K J, TIAN C, et al. Aerobic granular sludge treating low-strength municipal wastewater: efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment[J]. Science of the Total Environment,2021,792:148297. doi: 10.1016/j.scitotenv.2021.148297 [30] 王思宇, 李军, 王秀杰, 等.添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030WANG S Y, LI J, WANG X J, et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science,2017,37(12):4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030 [31] JIANG Z W, LU Y Y, XU J Q, et al. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting[J]. Bioresource Technology,2019,292:121942. doi: 10.1016/j.biortech.2019.121942 [32] 郑杰蓉, 汪素芳, 赵晓婵, 等.厌氧反硝化体系对磺胺嘧啶的共代谢降解特性[J]. 科学技术与工程,2020,20(35):14760-14766. doi: 10.3969/j.issn.1671-1815.2020.35.060ZHENG J R, WANG S F, ZHAO X C, et al. Co-metabolic degradation characteristics of sulfadiazine in nitrate anaerobic denitrifying system[J]. Science Technology and Engineering,2020,20(35):14760-14766. doi: 10.3969/j.issn.1671-1815.2020.35.060 [33] 张晓红, 姜博, 张文武, 等.京津冀区域市政污水厂活性污泥种群结构的多样性及差异[J]. 微生物学通报,2019,46(8):1896-1906.ZHANG X H, JIANG B, ZHANG W W, et al. Microbial community diversity of activated sludge from municipal wastewater treatment plants in Beijing-Tianjin-Hebei region[J]. Microbiology China,2019,46(8):1896-1906. [34] 高景峰, 王时杰, 樊晓燕, 等.同步脱氮除磷好氧颗粒污泥培养过程微生物群落变化[J]. 环境科学,2017,38(11):4696-4705.GAO J F, WANG S J, FAN X Y, et al. Microbial population dynamics during sludge granulation in a simultaneous nitrogen and phosphorus removal system[J]. Environmental Science,2017,38(11):4696-4705. [35] 许涛, 王国英, 岳秀萍.Diaphorobacter sp. PDB3菌好氧反硝化脱氮特性[J]. 中国环境科学,2018,38(6):2321-2328. doi: 10.3969/j.issn.1000-6923.2018.06.036XU T, WANG G, YU X P et al. The nitrogen removal characteristics of aerobic denitrification by Diaphorobacter sp. PDB3[J]. China Environmental Science,2018,38(6):2321-2328. doi: 10.3969/j.issn.1000-6923.2018.06.036 [36] PAN K L, GAO J F, LI H Y, et al. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing[J]. Bioresource Technology,2018,256:152-159. doi: 10.1016/j.biortech.2018.02.012 [37] 何琴, 李蕾, 瞿莉, 等.餐厨垃圾干式厌氧消化污泥膨胀微生态特征[J]. 中国环境科学,2018,38(3):1010-1017. doi: 10.3969/j.issn.1000-6923.2018.03.026HE Q, LI L, QU L, et al. Microbial characteristics of bulking sludge in high-solids anaerobic digestion of kitchen waste[J]. China Environmental Science,2018,38(3):1010-1017. doi: 10.3969/j.issn.1000-6923.2018.03.026 [38] 季斌, 陈威, 樊杰, 等.好氧颗粒污泥的微生物研究进展[J]. 科学通报,2017,62(23):2639-2648. doi: 10.1360/N972016-01192JI B, CHEN W, FAN J, et al. Research progress on microbes in aerobic granular sludge[J]. Chinese Science Bulletin,2017,62(23):2639-2648. doi: 10.1360/N972016-01192 [39] 徐芯渝, 李伟民, 叶姜瑜.光合细菌强化SBR系统处理垃圾渗滤液及生物群落结构分析[J]. 环境工程,2020,38(1):99-104.XU X Y, LI W M, YE J Y. Treatment of landfill leachate by photosynthetic bacteria in SBR system and analysis on biological community structure[J]. Environmental Engineering,2020,38(1):99-104. [40] FELFÖLDI T, KÉKI Z, SIPOS R, et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 9): 2146-2150. [41] 戴晓虎, 何进, 严寒, 等.游离氨调控对污泥高含固厌氧消化反应器性能的影响[J]. 环境科学,2017,38(2):679-687.DAI X H, HE J, YAN H, et al. Effects of free ammonia regulation on the performance of high solid anaerobic digesters with dewatered sludge[J]. Environmental Science,2017,38(2):679-687. [42] SONG L C, NIU X G, ZHANG N W, et al. Effect of biochar-immobilized Sphingomonas sp. PJ2 on bioremediation of PAHs and bacterial community composition in saline soil[J]. Chemosphere,2021,279:130427. doi: 10.1016/j.chemosphere.2021.130427 [43] WU X T, HE Y Q, LI G X, et al. Genome sequence of sulfide-dependent denitrification bacterium Thermomonas sp. strain XSG, isolated from marine sediment[J]. Microbiology Resource Announcements,2021,10(15):e00057. [44] 杨宏, 徐富, 孟琛, 等.包埋活性污泥反硝化性能的快速提高及群落分析[J]. 环境科学,2018,39(10):4661-4669.YANG H, XU F, MENG C, et al. Rapid improvement of denitrification performance of embedded activated sludge and community analysis[J]. Environmental Science,2018,39(10):4661-4669. [45] CHENG W J, ZHANG L G, XU W J, et al. Formation and characteristics of filamentous granular sludge[J]. Water Science & Technology,2020,82(2):364-372. ⊗