Comprehensive evaluation research of livestock and poultry waste treatment technologies in the ecological fragile areas of Northwest China
-
摘要:
畜禽粪污处理技术在不同地区适用性有较大差异。为全面、客观、科学地筛选出适宜西北地区的畜禽粪污处理技术,将生命周期评价、费用效益评价与层次分析法耦合,从技术、经济、气候、直接环境影响与间接环境影响5个方面,建立了包含18项指标的西北生态脆弱区畜禽粪污处理技术评价体系;以兰州市畜禽粪污处理技术为例,分析好氧堆肥、厌氧发酵、垫料利用3种处理技术的适用性。结果表明:兰州市畜禽粪污处理技术适用性综合排序为垫料利用(72.21分)>好氧堆肥(71.55分)>厌氧发酵(68.79分),垫料利用技术更适宜在西北地区推广;垫料利用技术环境友好性明显优于厌氧发酵和好氧堆肥技术;使用好氧堆肥和厌氧发酵技术处理畜禽粪污可为养殖场增加额外收益。该研究可为西北地区畜禽粪污处理技术模式构建和优化提供指导。
Abstract:The applicability of livestock and poultry waste treatment technology is quite different in different regions. In order to comprehensively, objectively and scientifically screen out suitable livestock and poultry waste treatment technologies in Northwest China, the life cycle assessment, cost benefit analysis (CBA) and analytic hierarchy process (AHP) methods were coupled to establish a screening system for livestock and poultry waste treatment technologies in Northwest China. The system included five factors of technology, economy, climate, direct and indirect environmental impacts, with a total of 18 indicators. Taking the livestock and poultry waste treatment technologies in Lanzhou as an example, the applicability of the technologies of aerobic composting, anaerobic fermentation, and litter utilization were analyzed. The results showed that the comprehensive ranking of the applicability of livestock and poultry waste treatment technologies in Lanzhou City was litter utilization technology (72.21 points)>aerobic composting technology (71.55 points) > anaerobic fermentation technology (68.79 points). It was more suitable to use litter utilization technology in Northwest China. The environmental friendliness of litter utilization technology is obviously better than that of anaerobic fermentation and aerobic composting technologies. The use of aerobic composting and anaerobic fermentation technologies could generate additional profits for the breeding farm. This research could provide guidance for the construction and optimization of livestock and poultry waste treatment technology models in Northwest China.
-
表 1 单位耗电量污染物排放量
Table 1. Electric pollutant emissions per 1 kW·h consumed
kg/(kW·h) CO2 CH4 NOx CO SO2 1.07 2.60×10−3 6.46×10−3 1.55×10−3 9.93×10−3 表 2 3种畜禽粪污处理技术生命周期清单分析结果
Table 2. Analysis results of life cycle inventory of three livestock and poultry waste treatment technologies
kg/FU 技术 处理环节 排放方式 CO2 CH4 NOx CO SO2 N2O NH3 COD NH3-N TP 好氧堆肥 堆肥阶段 直接排放 78.100 3.800 0.147 3.260 间接排放 3.349 0.008 0.020 0.005 0.031 翻堆阶段 直接排放 间接排放 3.210 0.008 0.019 0.005 0.030 废水处理阶段 直接排放 45.200 0.013 0.240 0.130 0.013 间接排放 合计 129.859 3.829 0.039 0.010 0.061 0.147 3.260 0.240 0.130 0.013 厌氧发酵 厌氧发酵阶段 直接排放 5.231 3.509 间接排放 23.604 0.057 0.143 0.034 0.219 沼气发电阶段 直接排放 96.498 间接排放 沼液、沼渣处理阶段 直接排放 148.986 0.003 0.009 0.002 0.012 0.001 1.247 0.409 0.061 间接排放 106.872 0.260 0.645 0.155 0.992 合计 381.191 3.829 0.797 0.191 1.223 0.001 1.247 0.409 0.061 垫料利用 垫料利用设备运行 直接排放 间接排放 6.912 0.017 0.042 0.010 0.064 高温发酵阶段 直接排放 3.480 0.004 间接排放 垫料储存阶段 直接排放 11.410 0.101 0.005 间接排放 废水处理阶段 直接排放 19.396 0.201 0.109 0.011 间接排放 合计 41.198 0.122 0.042 0.01 0.064 0.005 0.201 0.109 0.011 表 3 3种畜禽粪污处理技术生命周期过程的标准化数值及加权评估值
Table 3. Standardized value and weighted evaluation value of life cycle process of three livestock and poultry waste treatment technologies
技术 环境影响类型 标准化数值 加权评估值 环境总影响 好氧堆肥 全球变暖 0.031 0.026 0.189 环境酸化 0.178 0.130 富营养化 0.021 0.015 光化学臭氧合成 0.034 0.018 厌氧发酵 全球变暖 0.055 0.045 0.149 环境酸化 0.051 0.037 富营养化 8.29×10−3 6.05×10−3 光化学臭氧合成 0.114 0.061 垫料利用 全球变暖 3.03×10−3 4.36×10−3 0.010 环境酸化 2.66×10−3 1.94×10−3 富营养化 4.92×10−4 1.10×10−3 光化学臭氧合成 5.26×10−3 2.79×10−3 表 4 目标层(A)与准则层(B1~B5)判断矩阵
Table 4. Judgment matrix about target layer (A) and criterion layer (B1-B5)
A B1 B2 B3 B4 B5 Wi lmax CR B1 1 1/2 5 1/2 2 0.203 5.178 0.032 B2 2 1 4 1/2 2 0.252 B3 1/5 1/4 1 1/5 1/4 0.051 B4 2 2 5 1 2 0.346 B5 1/2 1/2 4 1/2 1 0.148 表 5 准则层(B1)与指标层(C11~C13)判断矩阵
Table 5. Judgment matrix about criterion layer (B1) and index layer (C11-C13)
B1 C11 C12 C13 Wi lmax CR C11 1 2 4 0.532 3.095 0.054 C12 1/2 1 5 0.366 C13 1/4 1/5 1 0.102 表 6 准则层(B2)与指标层(C21~C23)判断矩阵
Table 6. Judgment matrix about criterion layer (B2) and index layer (C21-C23)
B2 C21 C22 C23 Wi lmax CR C21 1 4 2 0.522 3.137 0.079 C22 1/4 1 1/6 0.095 C23 1/2 6 1 0.382 表 7 准则层(B3)与指标层(C31~C33)判断矩阵
Table 7. Judgment matrix about criterion layer (B3) and index layer (C31-C33)
B3 C31 C32 C33 Wi lmax CR C31 1 2 2 0.478 3.136 0.078 C32 1/2 1 1/3 0.172 C33 1/2 3 1 0.350 表 8 准则层(B4)与指标层(C41~C45)判断矩阵
Table 8. Judgment matrix about criterion layer (B4) and index layer (C41-C45)
B4 C41 C42 C43 C44 C45 Wi lmax CR C41 1 3 2 3 7 0.382 5.478 0.085 C42 1/3 1 3 3 6 0.265 C43 1/2 1/3 1 3 8 0.204 C44 1/3 1/3 1/3 1 6 0.116 C45 1/7 1/6 1/8 1/6 1 0.034 表 9 准则层(B5)与指标层(C51~C54)判断矩阵
Table 9. Judgment matrix about criterion layer (B5) and index layer (C51-C54)
B5 C51 C52 C53 C54 Wi lmax CR C51 1 1/5 2 1/3 0.112 4.079 0.022 C52 5 1 6 3 0.558 C53 1/2 1/6 1 1/4 0.071 C54 3 1/3 4 1 0.259 表 10 指标层(C)总排序结果
Table 10. Total ranking result of index layer (C)
目标层 准则层 准则层权重 指标层 指标层权重 综合权重 综合排序 西北生态脆弱区畜禽粪污处理
技术评价(A)技术因素(B1) 0.203 机械化程度(C11) 0.532 0.108 3 操作复杂程度(C12) 0.366 0.074 7 占地面积(C13) 0.102 0.021 13 经济因素(B2) 0.252 单位(年)处理量投资(C21) 0.522 0.131 2 处理周期(C22) 0.095 0.024 12 单位(年)处理量效益(C23) 0.382 0.096 4 气候因素(B3) 0.051 常年风向(C31) 0.478 0.024 11 年均降水量(C32) 0.172 0.009 18 年均气温(C33) 0.350 0.018 14 直接环境影响因素(B4) 0.346 水环境影响程度(C41) 0.382 0.132 1 土壤环境影响程度(C42) 0.265 0.092 5 大气环境影响程度(C43) 0.204 0.071 8 环境风险程度(C44) 0.116 0.040 9 生态影响程度(C45) 0.034 0.013 16 间接环境影响因素(B5) 0.148 全球变暖(C51) 0.112 0.017 15 环境酸化(C52) 0.558 0.083 6 富营养化(C53) 0.071 0.011 17 光化学臭氧合成(C54) 0.259 0.038 10 表 11 西北生态脆弱区畜禽粪污处理技术适用性评价赋值
Table 11. Assignment of applicability evaluation of livestock and poultry waste treatment technologies in ecological fragile areas of Northwest China
指标层 20分 40分 60分 80分 100分 机械化程度(C11) 人工 以人工为主 半自动 以机械化设备为主 全自动 操作复杂程度(C12) 复杂 较复杂 一般 较简单 简单 占地面积(C13)/hm2 >3 1.5~3 1~1.5 0.5~1 <0.5 单位(年)处理量投资(C21)/(元/m3) >40 30~40 20~30 10~20 <10 处理周期(C22)/d >20 15~20 10~15 5~10 <5 单位(年)处理量效益(C23)/(元/m3) <15 15~20 20~25 25~30 >30 常年风向(C31) 位于主导风向上风向且风频高于10% 位于主导风向上风向且风频低于10% 全年平均风速低于
1 m/s位于主导风向下风向且风频低于10% 位于主导风向下风向且风频高于10% 年均降水量(C32)/mm >1 600 1 200~1 600 800~1 200 400~800 <400 年平均气温(C33)/℃ <0 0~5 5~10 10~15 >15 水环境影响程度(C41) 一级评价 二级评价 三级评价 仅做简要说明 土壤环境影响程度(C42) 一级评价 二级评价 三级评价 仅做简要说明 大气环境敏感程度(C43) 一级评价 二级评价 三级评价 仅做简要说明 环境风险(C44) 一级评价 二级评价 三级评价 仅做简要说明 生态影响程度(C45) 一级评价 二级评价 三级评价 仅做简要说明 全球变暖(C51) 环境影响潜值高于0.09 环境影响潜值为0.06~0.09 环境影响潜值为0.03~0.06 环境影响潜值为0.01~0.03 环境影响潜值低于0.01 环境酸化(C52) 环境影响潜值高于0.09 环境影响潜值为0.06~0.09 环境影响潜值为0.03~0.06 环境影响潜值为0.01~0.03 环境影响潜值低于0.01 富营养化(C53) 环境影响潜值高于0.09 环境影响潜值为0.06~0.09 环境影响潜值为0.03~0.06 环境影响潜值为0.01~0.03 环境影响潜值低于0.01 光化学臭氧合成(C54) 环境影响潜值高于0.09 环境影响潜值为0.06~0.09 环境影响潜值为0.03~0.06 环境影响潜值为0.01~0.03 环境影响潜值低于0.01 表 12 3种畜禽粪污处理技术成本及效益分析
Table 12. Cost and benefit analysis of three livestock and poultry waste treatment technologies
技术 养殖场规
模/头(猪)粪污处理量/
(万m3/a)主要产物 成本/(万元/a) 效益/(万元/a) 有机
肥/(t/a)沼气/
(万m3/a)沼液、沼渣/(t/a) 垫料/
(万m3/a)建设
投资人员
工费水、电及物料费 合计 有机肥 沼气
发电沼液、沼渣
还田垫料
利用合计 好氧
堆肥15 000 0.58 180.29 2 4.8 4.48 11.28 12.6 12.6 厌氧
发酵100 000 18.25 103.58 4 500 83.8 72 277.61 433.41 191.29 315 506.29 垫料
利用100 000 11.75 7.51 37.98 48 253.34 339.32 262.89 262.89 表 13 3种畜禽粪污处理技术的指标参数得分
Table 13. Index parameter score of three livestock and poultry waste treatment technologies
技术 C11 C12 C13 C21 C22 C23 C31 C32 C33 C41 C42 C43 C44 C45 C51 C52 C53 C54 好氧堆肥 80 80 60 80 60 60 80 100 60 80 80 60 100 80 80 20 80 80 厌氧发酵 100 40 80 60 80 80 40 80 60 80 60 60 80 80 60 60 100 40 垫料利用 80 60 20 60 40 60 80 100 60 80 60 60 100 80 100 100 100 100 -
[1] 程东林, 陈英, 乔蕻强, 等.西北生态脆弱区城市土地生态安全时序性评价: 以兰州市为例[J]. 中国国土资源经济,2020,33(7):83-89.CHENG D L, CHEN Y, QIAO H Q, et al. Time series evaluation of urban land eco-security in eco-vulnerable areas of northwest China: a case study of Lanzhou[J]. Natural Resource Economics of China,2020,33(7):83-89. [2] LI F, CHENG S K, YU H L, et al. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China[J]. Journal of Cleaner Production,2016,126:451-460. doi: 10.1016/j.jclepro.2016.02.104 [3] WANG M L, LIU R H, LU X Y, et al. Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(5):634-640. doi: 10.1007/s00128-018-2315-7 [4] 生态环境部, 国家统计局, 农业农村部. 第二次全国污染源普查公报[A/OL]. (2020-06-08)[2021-08-08]. https://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html. [5] ALI RAJAEIFAR M, GHANAVATI H, DASHTI B B, et al. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review[J]. Renewable and Sustainable Energy Reviews,2017,79:414-439. doi: 10.1016/j.rser.2017.04.109 [6] 李红娜, 吴华山, 耿兵, 等.我国畜禽养殖污染防治瓶颈问题及对策建议[J]. 环境工程技术学报,2020,10(2):167-172.LI H N, WU H S, GENG B, et al. The bottleneck and countermeasures in the pollution control of livestock and poultry breeding in China[J]. Journal of Environmental Engineering Technology,2020,10(2):167-172. [7] 罗娟, 赵立欣, 姚宗路, 等.规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J]. 农业工程学报,2020,36(17):182-189.LUO J, ZHAO L X, YAO Z L, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(17):182-189. [8] 向欣, 罗煜, 程红胜, 等.基于层次分析法和模糊综合评价的沼气工程技术筛选[J]. 农业工程学报,2014,30(18):205-212.XIANG X, LUO Y, CHENG H S, et al. Biogas engineering technology screening based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(18):205-212. [9] GARBS M, GELDERMANN J. Analysis of selected economic and environmental impacts of long distance manure transports to biogas plants[J]. Biomass and Bioenergy,2018,109:71-84. doi: 10.1016/j.biombioe.2017.12.009 [10] RUIZ D, SAN MIGUEL G, CORONA B, et al. Environmental and economic analysis of power generation in a thermophilic biogas plant[J]. Science of the Total Environment,2018,633:1418-1428. doi: 10.1016/j.scitotenv.2018.03.169 [11] 陈励芳, 赵希智, 朱旭鑫.金昌市、武威市和兰州市畜禽养殖粪污资源化利用现状调研报告[J]. 甘肃畜牧兽医,2017,47(11):48-50.CHEN L F, ZHAO X Z, ZHU X X. Investigation report on the present situation of resource utilization of livestock and poultry manure in Jinchang, Wuwei and Lanzhou[J]. Gansu Animal Husbandry and Veterinary,2017,47(11):48-50. [12] 罗长健.畜禽粪便好氧堆肥处理技术探讨[J]. 河南农业,2019(18):46-47.LUO C J. Discussion on aerobic composting treatment technology of livestock manure[J]. Agriculture of Henan,2019(18):46-47. [13] 裴忠良. 集约化猪场粪便处理的生命周期评价[D]. 哈尔滨: 东北农业大学, 2012. [14] 曾雅琼, 施正香, 王盼柳.牛粪垫料再生系统温室气体排放及其对环境的影响[J]. 中国农业大学学报,2018,23(7):66-74.ZENG Y Q, SHI Z X, WANG P L. Research on greenhouse gas emissions of bedding recovery unit system and its impact on environment[J]. Journal of China Agricultural University,2018,23(7):66-74. [15] MAEDA K, HANAJIMA D, MORIOKA R, et al. Mitigation of greenhouse gas emission from the cattle manure composting process by use of a bulking agent[J]. Soil Science and Plant Nutrition,2013,59(1):96-106. doi: 10.1080/00380768.2012.733868 [16] LIU J S, XIE Z B, LIU G, et al. A holistic evaluation of CO2 equivalent greenhouse gas emissions from compost reactors with aeration and calcium superphosphate addition[J]. Journal of Resources and Ecology, 2010, 25: 177-185. [17] van der WERF H M G, PETIT J, SANDERS J. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne[J]. Agricultural Systems,2005,83(2):153-177. doi: 10.1016/j.agsy.2004.03.005 [18] 代小蓉. 集约化猪场NH3的排放系数研究[D]. 杭州: 浙江大学, 2010. [19] 夏湘勤, 席北斗, 黄彩红, 等.畜禽粪便堆肥臭气控制研究进展[J]. 环境工程技术学报,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142XIA X Q, XI B D, HUANG C H, et al. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142 [20] 张颖, 夏训峰, 李中和, 等.规模化养牛场粪便处理生命周期评价[J]. 农业环境科学学报,2010,29(7):1423-1427.ZHANG Y, XIA X F, LI Z H, et al. Life cycle assessment of manure treatment in scaled cattle farms[J]. Journal of Agro-Environment Science,2010,29(7):1423-1427. [21] 张颖,夏训峰,周素霞, 等.规模化养猪场生命周期环境影响评价[J]. 环境工程技术学报,2012,2(5):428-432.ZHANG Y,XIA X F,ZHOU S X, et al. Life cycle assessment of large-scale piggery for environmental assessment[J]. Journal of Environmental Engineering Technology,2012,2(5):428-432. [22] 梁勤爽. 模拟畜禽粪便直接还田对氮磷的释放[D]. 重庆: 西南大学, 2009. [23] 段雪琴. 集约化奶牛养殖场粪污管理系统的环境影响生命周期评价[D]. 杨凌: 西北农林科技大学, 2018. [24] 梁龙, 陈源泉, 高旺盛.我国农业生命周期评价框架探索及其应用: 以河北栾城冬小麦为例[J]. 中国人口·资源与环境,2009,19(5):154-160.LIANG L, CHEN Y Q, GAO W S. Framework study and application of agricultural life cycle assessment in China: a case study of winter wheat production in Luancheng of Hebei[J]. China Population Resources and Environment,2009,19(5):154-160. [25] CASTANHEIRA É G, DIAS A C, ARROJA L, et al. The environmental performance of milk production on a typical Portuguese dairy farm[J]. Agricultural Systems,2010,103(7):498-507. doi: 10.1016/j.agsy.2010.05.004 [26] HUIJBREGTS M A J, THISSEN U, GUINÉE J B, et al. Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA[J]. Chemosphere,2000,41(4):541-573. doi: 10.1016/S0045-6535(00)00030-8 [27] 李云燕, 葛畅.环境费用效益分析: 理论、应用与展望[J]. 环境保护与循环经济,2016,36(9):29-34. doi: 10.3969/j.issn.1674-1021.2016.09.010LI Y Y, GE C. Analysis of environmental cost and benefit: theory, application and prospect[J]. Environmental Protection and Circular Economy,2016,36(9):29-34. doi: 10.3969/j.issn.1674-1021.2016.09.010 [28] 连海明. 规模化养猪场粪污处理的成本与效益分析[D]. 北京: 中国农业科学院, 2010. [29] MARTINEZ-SANCHEZ V, KROMANN M A, ASTRUP T F. Life cycle costing of waste management systems: overview, calculation principles and case studies[J]. Waste Management,2015,36:343-355. doi: 10.1016/j.wasman.2014.10.033 [30] YANG L L, XIAO X, GU K. Agricultural waste recycling optimization of family farms based on environmental management accounting in rural China[J]. Sustainability,2021,13(10):5515. doi: 10.3390/su13105515 [31] 李艳苓, 朱昌雄, 李红娜, 等.基于层次分析法的农业面源污染防治技术评价[J]. 环境工程技术学报,2019,9(4):355-361.LI Y L, ZHU C X, LI H N, et al. Evaluation of agricultural non-point source pollution control technologies based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology,2019,9(4):355-361. [32] 李梁, 曹欣然, 庞燕, 等.洱海流域农村生活污水治理技术评价[J]. 环境工程技术学报,2019,9(4):349-354.LI L, CAO X R, PANG Y, et al. Evaluation of rural domestic wastewater treatment technologies in Lake Erhai Basin[J]. Journal of Environmental Engineering Technology,2019,9(4):349-354. [33] 韩旭, 生贺, 夏甫, 等.危险废物填埋场地下水污染风险评价中指标权重计算方法优化比选[J]. 环境科学研究,2021,34(6):1378-1386.HAN X, SHENG H, XIA F, et al. Optimized comparison and selection of index weight calculation methods in hazardous waste landfill site groundwater pollution risk assessment[J]. Research of Environmental Sciences,2021,34(6):1378-1386. [34] 李艳萍, 乔琦, 柴发合, 等.基于层次分析法的工业园区环境风险评价指标权重分析[J]. 环境科学研究,2014,27(3):334-340.LI Y P, QIAO Q, CHAI F H, et al. Study on environmental risk assessment index weight of industrial park based on the analytic hierarchy process[J]. Research of Environmental Sciences,2014,27(3):334-340. [35] 田羽, 方刚, 周长波, 等.我国橡胶制品行业VOCs末端减排技术评估[J]. 环境工程技术学报,2021,11(4):797-806.TIAN Y, FANG G, ZHOU C B, et al. Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China[J]. Journal of Environmental Engineering Technology,2021,11(4):797-806. [36] 王月, 王劢博, 杨悦, 等.西北生态脆弱区城市生活垃圾处理厂适用性评价[J]. 中国环境科学,2021,41(12):5933-5942. doi: 10.3969/j.issn.1000-6923.2021.12.050WANG Y, WANG M B, YANG Y, et al. The optimization of municipal solid waste treatment technology in the ecological fragile areas of northwest China[J]. China Environmental Science,2021,41(12):5933-5942. doi: 10.3969/j.issn.1000-6923.2021.12.050 [37] PUBULE J, BLUMBERGA D. Impact assessment of biogas projects in Latvia[J]. International Journal of Sustainable Development and Planning,2014,9(2):251-262. doi: 10.2495/SDP-V9-N2-251-262 [38] 问鑫.规模化猪场不同粪污处理的机理及经济分析[J]. 湖南饲料,2017(6):33-38.WEN X. Mechanism and economic analysis of different manure treatment in large-scale pig farms[J]. Hunan Feed,2017(6):33-38. ◇