Research on key building parameters affecting the vapor intrusion of VOCs in contaminated sites
-
摘要:
土壤/地下水中挥发性有机物(VOCs)经过迁移进入室内引起的呼吸吸入暴露,即蒸气入侵(vapor intrusion,VI)是VOCs影响人体健康的重要暴露途径。建筑物参数是影响VOCs从土壤向室内的迁移过程,改变室内人群暴露浓度的重要因素之一。通过系统梳理英美等发达国家暴露风险评估中建筑物参数的技术文件,总结了影响VI的3个关键参数(空气交换速率、建筑容积和地基裂隙)的确定方法,并对比我国暴露风险评估中建筑物参数的研究现状,从重视跨部门基础数据收集、构建分区域本土化参数等方面提出完善建筑物参数及其技术方法的思路。
Abstract:Inhalation exposure caused by vapor intrusion (VI) with the migration of volatile organic compounds (VOCs) from soil and groundwater into the indoor environment is essential to the human health risk assessment of VOCs in contaminated sites. Building parameters are important factors that affect the VOCs migration from the contaminated soil to indoor air and change the indoor concentration for population exposure. The technical documents of building parameters for exposure risk assessment in developed countries such as the UK and the US were elaborated systematically, and the determination methods of three key parameters affecting VI, namely, air exchange rate, building volume and foundation crack, were summarized. Furthermore, the research development of building parameters in China’s exposure risk assessment was illustrated, and the idea of improving building parameters and their technical methods were put forward, from the aspects of collecting cross-sectoral basic data and constructing regional localization parameters, to provide technical support for the refined exposure risks assessment in VOCs contaminated sites in China.
-
表 1 美国不同地理区域住宅AER统计数据
Table 1. Statistics of residential air exchange rates in different geographic regions in the United States
次/h 地理区域 算术平均值 算术标准偏差 几何平均值 几何平均偏差 P10 P50 P90 最大值 西部 0.66 0.87 0.47 2.11 0.20 0.43 1.25 23.32 北部中部 0.57 0.63 0.39 2.36 0.16 0.35 1.49 4.52 东北部 0.71 0.60 0.54 2.14 0.23 0.49 1.33 5.49 南部 0.61 0.51 0.46 2.28 0.16 0.49 1.21 3.44 所有地区 0.63 0.65 0.46 2.25 0.18 0.45 1.26 23.32 表 2 美国商业建筑AER统计数据
Table 2. Statistics of commercial buildings air exchange rates in the United States
次/h 建筑类型 范围 平均值 标准偏差 P10 教育 0.8~3.0 1.9 0.87 0.60 办公楼(面积<9 290 m2) 0.3~4.1 1.5 0.87 办公楼(面积> 9 290 m2) 0.7~3.6 1.8 0.87 图书馆 0.3~1.0 0.6 0.87 多用途建筑 0.6~1.9 1.4 0.87 自然通风建筑 0.6~0.9 0.8 0.87 表 3 澳大利亚住宅AER的相关研究
Table 3. Results of air exchange rate researches on residential buildings in Australia
城市/国家 AER平均
值/(次/h)描述 布里斯班[31] 0.61或3.0 13栋住宅;不同房龄,砖或木,不同地势;测量期间所有门窗均关闭,或需要打开时门窗正常打开 墨尔本[32] 0.33 7栋无人居住的住宅;单层,房龄和建筑材料变化很大;所有房屋均覆盖地板,并涂有油漆;测量了渗透速率(所有窗户和外部门都关闭,除了厕所门外所有内部门都打开) 珀斯[33] 0.05~0.41 9栋新住宅;砖饰面,瓷砖屋顶,混凝土板地板,单层,无固定墙壁通风口;使用示踪气体技术 悉尼[34] 0.9 43栋住宅;在冬季晚上测量(燃气加热器加热,门窗关闭以模拟冬季条件) 0.33 房龄<5年;在冬季夜间测量(加热无效燃气加热器、门窗关闭以模拟冬季条件) 澳大利亚 0.60 澳大利亚住宅空气交换速率的中间值(0.3~0.9次/h) 表 4 日本住宅AER研究数据
Table 4. Statistics of air exchange rates of different residential types in Japan
次/h 建筑类型 测定法 AER 平均值 最小值 最大值 几何
平均值几何标准
偏差单户 一定浓度 0.54 0.12 1.07 0.48 1.67 单户/多户 风量测定 0.41 0.17 0.90 0.38 1.50 单户 PFT 0.41 0.24 0.65 0.39 1.43 单户/多户 PFT 1.01 0.29 2.60 0.84 1.83 表 5 美国RECS项目中住宅容积统计数据
Table 5. Statistics of residential volumes from RECS project in the United States
项目与房屋类型 容积/m3 占比/% 房屋类型1) 独栋别墅 562 63.3 双拼别墅 401 5.9 2~4单元的公寓 249 7.9 5个或以上单元的公寓 192 16.8 活动房 246 6.1 平均值 446 人口普查区域 东北部 480 18.3 中西部 515 22.8 南部 423 37.1 西部 387 21.8 城市和乡村2) 城市 421 77.6 乡村 536 22.4 1)假设房屋高度是2.44 m,采用地板面积来计算住房容积。包括所有的地下室,已完工或者安装调节系统(加热或冷却)的阁楼和车库。未安装空调或者未完工的阁楼或者独立车库除外。2)城市和乡村的定义来自美国人口调查局。 表 6 美国CBECS项目商业建筑容积统计数据
Table 6. Statistics of commercial building volumes from CBECS project in the United States
m3 建筑类型 平均值 P10 闲置 4 789 408 办公楼 5 036 510 实验室 24 681 2 039 非冷库仓库 9 298 1 019 食品销售 1 889 476 公共秩序和安全 5 253 816 门诊 3 537 680 冷库 19 716 1 133 宗教机构 3 443 612 集会机构 4 839 595 教育机构 8 694 527 餐饮服务机构 1 889 442 急诊 82 034 17 330 护理院 15 522 1 546 出租房 11 559 527 商店 7 891 1 359 封闭式商场 287 978 35 679 商场以外的零售店 3 310 510 服务业 2 213 459 其他 5 236 425 所有建筑 5 575 527 表 7 澳大利亚住宅面积和容积统计数据
Table 7. Statistics of residential area and volume in Australia
建筑参数 1984—
1985年1993—
1994年2002—
2003年2008—
2009年平均值 住宅面
积/m2新建别墅 162.2 188.7 227.6 245.3 206.0 新建的
其他住宅99.2 115.9 134.0 116.4 所有新
住宅149.7 171.1 205.7 175.5 住宅容
积/m3新建别墅 390 450 550 590 500 新建的
其他住宅240 280 320 280 所有新住宅 360 410 490 420 表 8 英国住宅和商业建筑参数统计值
Table 8. Statistics of the residential and commercial building parameters in the United Kingdom
建筑类型 建筑面积/m2 建筑高度/m 通用的住宅建筑 28 4.8 通用的商业建筑 424 9.6 不同类型
住宅建筑住宅小平房 78.0 2.4 带阶梯的小房子 28.0 4.8 带阶梯的中等/大房子 44.0 4.8 半独立式住房 43.0 4.8 独立式住房 68.0 4.8 不同类型
商业建筑仓库(1970年前) 1 089.0 5.2 仓库(1970年后) 1 914.0 5.9 办公室(1970年前) 424.0 10.2 办公室(1970年后) 610.0 13.0 表 9 日本不同类型住宅面积统计数据
Table 9. Area statistics of different residential types in Japan
住宅类型 不同面积住宅的占比/% 平均
值/m229 m2 30~
49 m250~
69 m270~
99 m2100~
149 m2>150 m2 面积不详 所有类型 9.9 14.2 16.8 19.2 22.4 15.3 2.2 94.9 专用住宅1) 10.2 14.6 17.1 19.3 22.3 14.4 2.2 92.5 一户建 0.4 3.3 8.6 23.1 38.6 25.5 0.6 126.4 长屋建 7.6 35.2 27.5 14.7 6.8 3.4 4.7 61.0 公共住宅 23.6 28.2 27.7 14.5 1.4 0.2 4.3 47.6 其他 4.3 11.6 16.3 19.1 21.7 22.2 4.7 111.9 1)专用住宅是指仅为居住而建造的住宅,不包括设有店铺、车间等的住宅。 表 10 英国住宅和商业建筑参数统计值
Table 10. Statistics of residential and commercial building parameters in the United Kingdom
建筑类型 地基厚
度/m地板裂隙
面积/cm2标准住宅用地下的建筑物参数取值 0.15 400 标准商业用地下的建筑参数取值 0.15 165 不同类型住宅
参数取值住宅小平房 0.15 706.5 带阶梯的小房子 0.15 423.3 带阶梯的中等/大房子 0.15 530.7 半独立式住房 0.15 524.6 独立式住房 0.15 659.7 不同类型商业建筑
参数取值仓库(1970年前) 0.15 2 640.0 仓库(1970年后) 0.15 3 499.9 办公室(1970年前) 0.15 1 647.3 办公室(1970年后) 0.15 1 975.9 表 11 我国不同气候区域住宅空气交换速率研究统计数据[58]
Table 11. Statistics of residential air exchange rates in different climate regions in China
次/h 气候区域 季节 开窗+关窗 开窗 关窗 样本数 P50 样本数 P50 样本数 P50 严寒地区 春季 564 0.34 93 1.58 471 0.26 夏季 710 1.92 530 2.95 180 0.33 秋季 559 0.33 135 1.45 424 0.24 冬季 534 0.34 71 1.32 458 0.3 寒冷地区 春季 452 0.46 147 1.32 305 0.31 夏季 493 1.44 394 1.74 99 0.4 秋季 379 0.52 162 1.37 217 0.35 冬季 556 0.41 94 0.87 405 0.37 温和地区 春季 245 1.38 157 2.21 88 0.27 夏季 247 2.32 201 3.16 46 0.17 秋季 179 1.87 123 2.33 56 0.14 冬季 247 1.61 158 2.08 89 0.33 夏热冬冷
地区春季 822 0.96 361 1.74 216 0.42 夏季 1 014 0.91 467 1.51 393 0.44 秋季 588 1.16 238 1.81 239 0.45 冬季 843 0.55 198 1.86 283 0.38 夏热冬暖
地区春季 451 0.84 229 2.28 222 0.24 夏季 603 0.57 237 2.38 336 0.36 秋季 403 0.78 193 2.59 210 0.39 冬季 325 0.43 118 2.07 191 0.26 -
[1] 尧一骏.我国污染场地治理与风险评估[J]. 环境保护,2016,44(20):25-28. doi: 10.14026/j.cnki.0253-9705.2016.20.005YAO Y J. Risk assessment and remediation of soil contamination in China[J]. Environmental Protection,2016,44(20):25-28. doi: 10.14026/j.cnki.0253-9705.2016.20.005 [2] 杨宾, 李慧颖, 伍斌, 等.污染场地中挥发性有机污染工程修复技术及应用[J]. 环境工程技术学报,2013,3(1):78-84. doi: 10.3969/j.issn.1674-991X.2013.01.014YANG B, LI H Y, WU B, et al. Engineering remediation techniques and its application for volatile organic compounds-contaminated sites[J]. Journal of Environmental Engineering Technology,2013,3(1):78-84. doi: 10.3969/j.issn.1674-991X.2013.01.014 [3] National Research Council. Risk assessment in the Federal Government[M]. Washington DC: National Academies Press, 1983. [4] MA J, MCHUGH T, BECKLEY L, et al. Vapor intrusion investigations and decision-making: a critical review[J]. Environmental Science & Technology,2020,54(12):7050-7069. [5] YAO Y J, SHEN R, PENNELL K G, et al. A review of vapor intrusion models[J]. Environmental Science & Technology,2013,47(6):2457-2470. [6] 郭晓欣, 张超艳, 张瑞环, 等.MIL-101高效吸附测定土壤气中三氯乙烯及健康风险评估[J]. 环境科学研究,2018,31(6):1129-1137. doi: 10.13198/j.issn.1001-6929.2018.01.04GUO X X, ZHANG C Y, ZHANG R H, et al. Determination of trichloroethylene in soil gas by MIL-101 adsorption and health risk assessment[J]. Research of Environmental Sciences,2018,31(6):1129-1137. doi: 10.13198/j.issn.1001-6929.2018.01.04 [7] 龙雨, 杨兵, 秦普丰, 等.土壤包气带含水率对氯代烃垂向迁移影响的模拟研究[J]. 环境科学研究,2017,30(8):1255-1261. doi: 10.13198/j.issn.1001-6929.2017.02.57LONG Y, YANG B, QIN P F, et al. Effects of moisture content on vertical migration of chlorinated hydrocarbons in soil unsaturated zone[J]. Research of Environmental Sciences,2017,30(8):1255-1261. doi: 10.13198/j.issn.1001-6929.2017.02.57 [8] SHEN R, SUUBERG E M. Impacts of changes of indoor air pressure and air exchange rate in vapor intrusion scenarios[J]. Building and Environment,2016,96:178-187. doi: 10.1016/j.buildenv.2015.11.015 [9] SONG S, SCHNORR B A, RAMACCIOTTI F C. Quantifying the influence of stack and wind effects on vapor intrusion[J]. Human and Ecological Risk Assessment:an International Journal,2014,20(5):1345-1358. doi: 10.1080/10807039.2013.858530 [10] MCHUGH T E, BECKLEY L, BAILEY D, et al. Evaluation of vapor intrusion using controlled building pressure[J]. Environmental Science & Technology,2012,46(9):4792-4799. [11] GUO Y M, HOLTON C, LUO H, et al. Identification of alternative vapor intrusion pathways using controlled pressure testing, soil gas monitoring, and screening model calculations[J]. Environmental Science & Technology,2015,49(22):13472-13482. [12] REICHMAN R, ROGHANI M, WILLETT E J, et al. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments[J]. Reviews on Environmental Health,2017,32(1/2):27-33. [13] US EPA. OSWER technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air[R]. Washington DC: Environmental Protection Agency, 2015. [14] US EPA. Exposure factors handbook-2011 Edition, EPA/600/R-090/052F[R]. Washington DC: Office of Research and Development, 2011. [15] American Society of Heating, Refrigerating and Air Conditioning Engineers. Handbook of fundamentals[M]. Atlanta, GA: ASHRAE Inc. , 2013. [16] BREEN M S, SCHULTZ B D, SOHN M D, et al. A review of air exchange rate models for air pollution exposure assessments[J]. Journal of Exposure Science & Environmental Epidemiology,2014,24(6):555-563. [17] KOONTZ M D, RECTOR H E. Estimation of distributions for residential air exchange rates: final report[R]. Washington DC: Office of Pollution Prevention and Toxics, US Environmental Protection Agency, 1995. [18] BREEN M S, BREEN M, WILLIAMS R W, et al. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina[J]. Environmental Science & Technology,2010,44(24):9349-9356. [19] BAXTER L K, STALLINGS C, SMITH L, et al. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling[J]. Journal of Exposure Science & Environmental Epidemiology,2017,27(2):227-234. [20] HOLTON C, LUO H, DAHLEN P, et al. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume[J]. Environmental Science & Technology,2013,47(23):13347-13354. [21] JOHNSTON J E, GIBSON J M. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study[J]. Journal of Exposure Science & Environmental Epidemiology,2014,24(6):564-571. [22] SHIRAZI E, PENNELL K G. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains[J]. Environmental Science Processes & Impacts,2017,19(12):1594-1607. [23] LOUREIRO C D O. Simulation of the steady-state transport of radon from soil into houses with basements under constant negative pressure[D/OL]. DOI: 10.2172/5486695. [24] LOUREIRO C O, ABRIOLA L M, MARTIN J E, et al. Three-dimensional simulation of radon transport into houses with basements under constant negative pressure[J]. Environmental Science & Technology,1990,24(9):1338-1348. [25] NAZAROFF W W, LEWIS S R, DOYLE S M, et al. Experiments on pollutant transport from soil into residential basements by pressure-driven airflow[J]. Environmental Science & Technology,1987,21(5):459-466. [26] YAO Y J, PENNELL K G, SUUBERG E M. Simulating the effect of slab features on vapor intrusion of crack entry[J]. Building and Environment,2013,59:417-425. doi: 10.1016/j.buildenv.2012.09.007 [27] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019. [28] US Environmental Protection Agency. Update for Chapter 19 of the exposure factors handbook-building characteristics[R]. Washington DC: National Center for Environmental Assessment Office of Research and Development, 2018. [29] TURK B H, BROWN J T, GEISLING-SOBOTKA K, et al. Indoor air quality and ventilation measurements in 38 Pacific Northwest commercial buildings: final report: volume 1, measurement results and interpretation[R]. Berkeley CA: Lawrence Berkeley National Laboratory, 1987. [30] HE C R, MORAWSKA L, GILBERT D. Particle deposition rates in residential houses[J]. Atmospheric Environment,2005,39(21):3891-3899. doi: 10.1016/j.atmosenv.2005.03.016 [31] BIGGS K L, BENNIE I D, MICHELL D. Air infiltration rates in some Australian houses[J]. Australian Institute of Building Papers,1987,2:49-61. [32] HARRISON V G. Natural ventilation and thermal insulation studies of West Australian State Housing Commission houses[D]. Perth, Australia: University of Western Australia, 1985. [33] FERRARI L. Indoor air pollution workshop paper: control of indoor air quality in domestic and public buildings[J]. Journal of Occupational Health and Safety, 1991, 7(2): 163-167. [34] GUO H, MORAWSKA L, HE C, et al. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom[J]. Atmospheric Environment,2008,42(4):757-768. doi: 10.1016/j.atmosenv.2007.09.070 [35] BIGGS K L, BENNIE I D and, MICHELL D. Air permeability of some Australian houses[J]. Building Environment, 1986, 21(2): 89-96. [36] Environment Agency. Review of building parameters for development of a soil vapour intrusion model[R]. Bristol: Environment Agency, 2005. [37] AIST Research Center for CRM. Japanese exposure factors handbook[R]. Kokyo: National Institute of Advanced Industrial Science and Technology, 2007. [38] 三原, 邦彰, 吉野, 等.実験及びCFD解析による簡易換気量測定法の基礎的研究[J]. 环境工学,2004:865-866. [39] US Department of Energy. US EPA analysis of survey data: residential energy consumption survey (RECS)[R]. Washington DC: Department of Energy, Energy Information Administration, 2008. [40] US Department of Energy. Residential energy consumption survey (RECS): technical documentation summary[R]. Washington DC: US Department of Energy, Energy Information Administration, 2013. [41] US Department of Energy. US EPA analysis of survey data. commercial buildings energy consumption survey (CBECS). Form EIA-871A[R]. Washington DC: US Department of Energy, Energy Information Administration, 2008. [42] Australian Bureau of Statistics. Environmental issues: energy use and conservation[R]. Canberra: Australian Bureau of Statistics, 2008. [43] Australian Bureau of Statistics. ABS data derived from building activity survey[R]. Canberra: Australian Bureau of Statistic, 2005. [44] Australian Bureau of Statistics. Feature article: houses in South Australia[R]. Canberra: Australian Bureau of Statistics, 2010. [45] Building Code of Australia. Australian Building Codes Board (ABCB)[S/OL]. [2022-01-20].https://www.abcb.gov.au/. [46] Department of Communities and Local Government. English House Condition Survey[R]. London: Department of Communities and Local Government, 2001. [47] BROWN F E, RICKABY P A, BRUHNS H R, et al. Surveys of nondomestic buildings in four English towns[J]. Environment and Planning B:Planning and Design,2000,27(1):11-24. doi: 10.1068/b2571 [48] POUT C, MACKENZIE F, BETTLE R. Non-domestic building energy fact file[R]. London: CRC, 1998. [49] NAZAROFF W W, FEUSTEL H, NERO A V, et al. Radon transport into a detached one-story house with a basement[J]. Atmospheric Environment (1967),1985,19(1):31-46. doi: 10.1016/0004-6981(85)90134-9 [50] FIGLEY D A, SNODGRASS L J. The effect of basement insulation on the depth of frost penetration adjacent to insulated foundations[J]. Journal of Thermal Insulation,1984,7(4):266-294. doi: 10.1177/109719638400700407 [51] American Society for Testing and Material. ASTM E1739-95 (e approved 2010) standard guide for risk-based corrective action applied at petroleum release sites[S]. West Conshohocken: ASTM international, 2010. [52] Environment Agency. Updated technical background to the CLEA Model[R]. Bristol: Environment Agency, 2008. [53] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. [54] 张斌, 邹卉, 肖杰, 等.RAG-C和RBCA模型中场地特征参数的差异及其启示[J]. 环境工程,2015,33(9):130-133. doi: 10.13205/j.hjgc.201509029ZHANG B, ZOU H, XIAO J, et al. Comparison of site-specific parameters in rag-c and rbca model and the implication for China[J]. Environmental Engineering,2015,33(9):130-133. doi: 10.13205/j.hjgc.201509029 [55] 住房和城乡建设部.民用建筑供暖通风与空气调节设计规范: GB50736—2012 [S]. 北京: 中国建筑工业出版社, 2012. [56] 住房和城乡建设部. 车库建筑设计规范: JGJ 100—2015[S]. 北京: 中国建筑工业出版社, 2015. [57] 建设部. 人民防空地下室设计规范: GB 50038—2005[S/OL]. [2022-01-20]. http://www.doc88.com/p-4029177550526.html. [58] HOU J, SUN Y X, CHEN Q Y, et al. Air change rates in urban Chinese bedrooms[J]. Indoor Air,2019,29(5):828-839. doi: 10.1111/ina.12582 [59] DENG T X, SHEN X, CHENG X J, et al. Investigation of window-opening behaviour and indoor air quality in dwellings situated in the temperate zone in China[J]. Indoor and Built Environment,2021,30(7):938-956. doi: 10.1177/1420326X20924746 [60] YOU Y, NIU C, ZHOU J, et al. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors[J]. Journal of Environmental Sciences,2012,24(4):657-664. doi: 10.1016/S1001-0742(11)60812-7 [61] CHENG P L. Natural ventilation rate distribution in dwellings in China’s 4 major cities[D]. Beijng: Tsinghua University, 2018. [62] 住房和城乡建设部. 民用建筑设计统一标准: GB 50352—2019[S]. 北京: 中国建筑工业出版社, 2019.
计量
- 文章访问数: 278
- HTML全文浏览量: 145
- PDF下载量: 38
- 被引次数: 0