留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DMSP-OLS与NPP-VIIRS整合数据的京津冀城市群碳排放时空演变特征

李云燕 盛清 代建

李云燕,盛清,代建.基于DMSP-OLS与NPP-VIIRS整合数据的京津冀城市群碳排放时空演变特征[J].环境工程技术学报,2023,13(2):447-454 doi: 10.12153/j.issn.1674-991X.20220089
引用本文: 李云燕,盛清,代建.基于DMSP-OLS与NPP-VIIRS整合数据的京津冀城市群碳排放时空演变特征[J].环境工程技术学报,2023,13(2):447-454 doi: 10.12153/j.issn.1674-991X.20220089
LI Y Y,SHENG Q,DAI J.Spatio-temporal evolution characteristics of carbon emissions in Beijing-Tianjin-Hebei urban agglomeration derived from integrated data of DMSP-OLS and NPP-VIIRS[J].Journal of Environmental Engineering Technology,2023,13(2):447-454 doi: 10.12153/j.issn.1674-991X.20220089
Citation: LI Y Y,SHENG Q,DAI J.Spatio-temporal evolution characteristics of carbon emissions in Beijing-Tianjin-Hebei urban agglomeration derived from integrated data of DMSP-OLS and NPP-VIIRS[J].Journal of Environmental Engineering Technology,2023,13(2):447-454 doi: 10.12153/j.issn.1674-991X.20220089

基于DMSP-OLS与NPP-VIIRS整合数据的京津冀城市群碳排放时空演变特征

doi: 10.12153/j.issn.1674-991X.20220089
基金项目: 国家社会科学基金后资助项目(21FJYB023);国家社会科学基金重大项目(20&ZD092);北京市社会科学基金重点项目(19YJA002)
详细信息
    作者简介:

    李云燕(1963—),女,教授,博士,主要从事环境经济与管理、低碳经济政策机制研究,yunyanli@126.com

    通讯作者:

    盛清(1995—),女,硕士,主要从事低碳发展研究,elmasheng@163.com

  • 中图分类号: X511

Spatio-temporal evolution characteristics of carbon emissions in Beijing-Tianjin-Hebei urban agglomeration derived from integrated data of DMSP-OLS and NPP-VIIRS

  • 摘要:

    为探究京津冀城市群地市级以上城市尺度的碳排放时空演变特征,通过拟合最优模型,将NPP-VIIRS数据转化为DMSP-OLS尺度的夜间灯光数据,得到京津冀城市群2005—2019年的长时间序列夜间灯光数据集;再结合北京、天津、河北能源消费统计碳排放数据,构建京津冀城市群地市级以上城市尺度碳排放估算模型,模拟京津冀城市群碳排放空间分布,并结合倾向值法探究其碳排放时空演变特征。结果表明:京津冀城市群夜间灯光数据与能源消费碳排放量之间的相关性较高,且通过了1%的显著性检验。2005—2019 年,京津冀城市群13个城市的碳排放量整体逐渐增加;城市群碳排放增长速度较为缓慢,但京津唐地区增长速度较快;13个城市中已有多个城市单位国内生产总值碳排放量2019年比2005年降幅超40%。研究显示,夜间灯光数据可用于估算京津冀城市群碳排放量,且京津唐地区碳排放量较高,增速较快,应作为重点碳减排地区。

     

  • 图  1  北京市、天津市碳排放量与夜间灯光DN的线性拟合

    Figure  1.  Linear fitting between carbon emission statistics and DN value of nighttime light in Beijing and Tianjin

    图  2  河北省碳排放量与夜间灯光DN的线性拟合

    Figure  2.  Linear fitting between carbon emission statistics and DN of nighttime light in Hebei Province

    图  3  2005—2019年京津冀城市群碳排放量的变化

    Figure  3.  Changes in carbon emissions of Beijing-Tianjin-Hebei urban agglomeration from 2005 to 2019

    图  4  京津冀城市群各城市2005—2019年碳排放量

    Figure  4.  Carbon emissions of cities in Beijing-Tianjin-Hebei urban agglomeration from 2005 to 2019

    图  5  2005—2019年京津冀城市群碳排放增长趋势

    Figure  5.  Carbon emission growth trend of Beijing-Tianjin-Hebei urban agglomeration from 2005 to 2019

    表  1  2012年和2013年DMSP-OLS与NPP-VIIRS数据拟合参数

    Table  1.   Fitting parameters of DMSP-OLS and NPP-VIIRS in 2012 and 2013

    拟合函数abcR2
    f(x)=ax+b4.989 3382 138.170.906 5
    f(x)=ax2+bx+c−0.000 103 4269.995 1251 872.250.941 2
    f(x)=axb1 2250.514 60.942 2
    f(x)=aln x+b82 116−600 6510.920 5
    下载: 导出CSV

    表  2  2012年、2014—2019年与2013年的NPP-VIIRS数据拟合情况

    Table  2.   NPP-VIIRS data fitting in 2012, 2014-2019 and 2013

    年份拟合函数aR2
    2012f(x)=ax1.099 30.9969
    2014f(x)=ax1.357 90.998 2
    2015f(x)=ax1.476 50.997 2
    2016f(x)=ax1.579 30.995 2
    2017f(x)=ax1.711 10.994 4
    2018f(x)=ax1.793 10.993 9
    2019f(x)=ax1.948 10.989 6
    下载: 导出CSV

    表  3  各能源的折标准煤换算系数和碳排放系数

    Table  3.   Conversion coefficient of converted standard coal and carbon emission coefficient of each energy source

    能源类型折标准煤换算系数/(t/t)碳排放系数/(万t/万t)
    煤炭0.714 30.755 9
    焦炭0.971 40.855 0
    原油1.428 60.585 7
    燃料油1.428 60.618 5
    汽油1.471 40.553 8
    煤油1.471 40.571 4
    柴油1.457 10.592 1
    天然气1.330 00.448 3
    热力34.120 00.670 0
    电力0.345 00.272 0
      注:折标准煤换算系数参照GB/T 2589—2020《综合能耗计算通则》;碳排放系数参照《IPCC国家温室气体清单指南》和《省级温室气体清单编制指南》。天然气的折标准煤换算系数单位为kg/m3;热力的折标准煤换算系数单位为kg/(106 kJ);电力的折标准煤换算系数单位为kg/(kW·h)。
    下载: 导出CSV

    表  4  碳排放量增长趋势等级划分标准

    Table  4.   Classification standard of carbon emission growth trend

    缓慢增长型较慢增长型中速增长型较快增长型迅猛增长型
    <$\bar C $−0.5S$\bar C $ −0.5S~
    $\bar C $+0.5S
    $\bar C $+0.5S~
    $\bar C $+S
    $\bar C $+S~
    $\bar C $ +1.5S
    >$\bar C $ +1.5S
      注:$ \bar C $为京津冀城市群各城市2005—2019年SLOPE平均值;S为标准差。
    下载: 导出CSV

    表  5  京津冀城市群2019年的单位国内生产总值碳排放量相较于2005年的下降幅度

    Table  5.   Decline of carbon emissions per unit of GDP in Beijing-Tianjin-Hebei urban agglomeration in 2019 compared with 2005 % 

    北京市天津市保定市沧州市承德市邯郸市衡水市廊坊市秦皇岛市石家庄市唐山市邢台市张家口市
    6645473531322049−533373138
    下载: 导出CSV
  • [1] WISE M, CALVIN K, THOMSON A, et al. Implications of limiting CO2 concentrations for land use and energy[J]. Science,2009,324:1183-1186. doi: 10.1126/science.1168475
    [2] 沈岩, 武彤冉, 闫静, 等.基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289

    SHEN Y, WU T R, YAN J, et al. Investigation on air pollutants and carbon dioxide emissions from motor vehicles in Beijing based on COPERT model[J]. Journal of Environmental Engineering Technology,2021,11(6):1075-1082. doi: 10.12153/j.issn.1674-991X.20210289
    [3] 郭宇杰, 龚亚萍, 邹玉飞, 等. 天津市生活垃圾处理碳排放时间变化特征及影响因素[J]. 环境工程技术学报2022, 12(3): 834-842.

    GUO Y, GONG Y P, ZOU Y F, et al. Temporal variation characteristics and influencing factors of carbon emissions from municipal solid waste treatment in Tianjin[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 834-842.
    [4] 何永贵, 于江浩.河北省碳排放及其影响因素变化趋势研究[J]. 环境科学与技术,2018,41(1):184-191.

    HE Y G, YU J H. Study on the change trend of carbon emissions and its influencing factors in Hebei Province[J]. Environmental Science & Technology,2018,41(1):184-191.
    [5] 李健, 李海霞.产业转移视角下京津冀石化产业碳排放因素分解与减排潜力分析[J]. 环境科学研究,2020,33(2):324-332. doi: 10.13198/j.issn.1001-6929.2019.05.05

    LI J, LI H X. Analysis of carbon emission factors decomposition and emission reduction potential of Beijing-Tianjin-Hebei Regional petrochemical industry from the perspective of industrial transfer[J]. Research of Environmental Sciences,2020,33(2):324-332. doi: 10.13198/j.issn.1001-6929.2019.05.05
    [6] 武娜, 沈镭, 钟帅.基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J]. 地球信息科学学报,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010

    WU N, SHEN L, ZHONG S. Spatio-temporal pattern of carbon emissions based on nightlight data of the Shanxi-Shaanxi-Inner Mongolia region of China[J]. Journal of Geo-Information Science,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010
    [7] 林中立, 徐涵秋, 陈弘.我国东部沿海三大城市群热岛变化及其与城市群发展的关系[J]. 环境科学研究,2018,31(10):1695-1704.

    LIN Z L, XU H Q, CHEN H. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China's eastern coastal region[J]. Research of Environmental Sciences,2018,31(10):1695-1704.
    [8] USTAOGLU E, BOVKR R, AYDNOGLU A C. Spatial distribution of GDP based on integrated NPS-VIIRS nighttime light and MODIS EVI data: a case study of Turkey[J]. Environment, Development and Sustainability,2021,23(7):10309-10343. doi: 10.1007/s10668-020-01058-5
    [9] CHANG S Z, WANG Z M, MAO D H, et al. Mapping the essential urban land use in Changchun by applying random forest and multi-source geospatial data[J]. Remote Sensing,2020,12(15):2488. doi: 10.3390/rs12152488
    [10] SAHOO S, GUPTA P K, SRIVASTAV S K. Comparative analysis between VIIRS-DNB and DMSP-OLS night-time light data to estimate electric power consumption in Uttar Pradesh, India[J]. International Journal of Remote Sensing,2020,41(7):2565-2580. doi: 10.1080/01431161.2019.1693077
    [11] STATHAKIS D, BALTAS P. Seasonal population estimates based on night-time lights[J]. Computers, Environment and Urban Systems,2018,68:133-141. doi: 10.1016/j.compenvurbsys.2017.12.001
    [12] 何则, 杨宇, 宋周莺, 等.中国能源消费与经济增长的相互演进态势及驱动因素[J]. 地理研究,2018,37(8):1528-1540.

    HE Z, YANG Y, SONG Z Y, et al. The mutual evolution and driving factors of China's energy consumption and economic growth[J]. Geographical Research,2018,37(8):1528-1540.
    [13] ELVIDGE C D, BAUGH K E, KIHN E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing,1997,18(6):1373-1379. doi: 10.1080/014311697218485
    [14] 马忠玉, 肖宏伟.基于卫星夜间灯光数据的中国分省碳排放时空模拟[J]. 中国人口·资源与环境,2017,27(9):143-150.

    MA Z Y, XIAO H W. Spatiotemporal simulation study of China's provincial carbon emissions based on satellite night lighting data[J]. China Population, Resources and Environment,2017,27(9):143-150.
    [15] 施开放. 多尺度视角下的中国碳排放时空格局动态及影响因素研究: 基于DMSP-OLS夜间灯光遥感数据的分析[D]. 上海: 华东师范大学, 2017.
    [16] WANG S J, SHI C Y, FANG C L, et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using[J]. Applied Energy,2019,235:95-105. doi: 10.1016/j.apenergy.2018.10.083
    [17] 于博, 杨旭, 吴相利. 哈长城市群县域碳排放空间溢出效应及影响因素研究: 基于NPP-VIIRS夜间灯光数据的实证[J]. 环境科学学报, 2020, 40(2): 697-706.

    YU B,YANG X,WU X L. Study on spatial spillover effects and influencing factors of carbon emissions in county areas of Ha-Chang City Group: evidence from NPP-VIIRS nightlight data[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 697-706.
    [18] 牛亚文, 赵先超, 胡艺觉.基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281

    NIU Y W, ZHAO X C, HU Y J. Spatial variation of carbon emissions from county land use in Chang-Zhu-Tan area based on NPP-VIIRS night light[J]. Acta Scientiae Circumstantiae,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281
    [19] ZHANG X W, WU J S, PENG J, et al. The uncertainty of nighttime light data in estimating carbon dioxide emissions in China: a comparison between DMSP-OLS and NPP-VIIRS[J]. Remote Sensing,2017,9(8):797. doi: 10.3390/rs9080797
    [20] ZHAO J C, CHEN Y L, JI G X, et al. Residential carbon dioxide emissions at the urban scale for county-level cities in China: a comparative study of nighttime light data[J]. Journal of Cleaner Production,2018,180:198-209. doi: 10.1016/j.jclepro.2018.01.131
    [21] ZHAO J C, JI G X, YUE Y L, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J]. Applied Energy,2019,235:612-624. doi: 10.1016/j.apenergy.2018.09.180
    [22] LÜ Q, LIU H B, WANG J T, et al. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Science of the Total Environment,2020,703:134394. doi: 10.1016/j.scitotenv.2019.134394
    [23] 京津冀协同发展领导小组. 京津冀协同发展规划纲要 [R]. 北京: 中央财经领导小组, 2015.
    [24] LIU Z F, HE C Y, ZHANG Q F, et al. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008[J]. Landscape and Urban Planning,2012,106(1):62-72. doi: 10.1016/j.landurbplan.2012.02.013
    [25] ZHAO M, ZHOU Y Y, LI X C, et al. Building a series of consistent night-time light data (1992-2018) in Southeast Asia by integrating DMSP-OLS and NPP-VIIRS[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(3):1843-1856. doi: 10.1109/TGRS.2019.2949797
    [26] LI X, LI D R, XU H M, et al. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J]. International Journal of Remote Sensing,2017,38(21):5934-5951. doi: 10.1080/01431161.2017.1331476
    [27] 董鹤松, 李仁杰, 李建明, 等.基于DMSP-OLS与NPP-VIIRS整合数据的中国三大城市群城市空间扩展时空格局[J]. 地球信息科学学报,2020,22(5):1161-1174. doi: 10.12082/dqxxkx.2020.190711

    DONG H S, LI R J, LI J M, et al. Study on urban spatiotemporal expansion pattern of three first-class urban agglomerations in China derived from integrated DMSP-OLS and NPP-VIIRS nighttime light data[J]. Journal of Geo-Information Science,2020,22(5):1161-1174. doi: 10.12082/dqxxkx.2020.190711
    [28] 吕倩, 刘海滨.基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J]. 经济地理,2020,40(12):12-21.

    LÜ Q, LIU H B. Multiscale spatio-temporal characteristics of carbon emission of energy consumption in Yellow River Basin based on the nighttime light datasets[J]. Economic Geography,2020,40(12):12-21.
    [29] 苏泳娴, 陈修治, 叶玉瑶, 等.基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526. doi: 10.11821/dlxb201311007

    SU Y X, CHEN X Z, YE Y Y, et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geographica Sinica,2013,68(11):1513-1526. ⊗ doi: 10.11821/dlxb201311007
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  624
  • HTML全文浏览量:  172
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回