留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高盐有机废水真空膜蒸馏处理中膜污染的微纳米气泡控制研究

黄超 刘倪佺 叶宇兵 徐晨翱 李攀 于水利

黄超,刘倪佺,叶宇兵,等.高盐有机废水真空膜蒸馏处理中膜污染的微纳米气泡控制研究[J].环境工程技术学报,2022,12(4):1333-1341 doi: 10.12153/j.issn.1674-991X.20220100
引用本文: 黄超,刘倪佺,叶宇兵,等.高盐有机废水真空膜蒸馏处理中膜污染的微纳米气泡控制研究[J].环境工程技术学报,2022,12(4):1333-1341 doi: 10.12153/j.issn.1674-991X.20220100
HUANG C,LIU N Q,YE Y B,et al.Study on micro-nanobubble control of membrane fouling in vacuum membrane distillation of high salt organic wastewater[J].Journal of Environmental Engineering Technology,2022,12(4):1333-1341 doi: 10.12153/j.issn.1674-991X.20220100
Citation: HUANG C,LIU N Q,YE Y B,et al.Study on micro-nanobubble control of membrane fouling in vacuum membrane distillation of high salt organic wastewater[J].Journal of Environmental Engineering Technology,2022,12(4):1333-1341 doi: 10.12153/j.issn.1674-991X.20220100

高盐有机废水真空膜蒸馏处理中膜污染的微纳米气泡控制研究

doi: 10.12153/j.issn.1674-991X.20220100
基金项目: 国家自然科学基金面上项目(51978489)
详细信息
    作者简介:

    黄超(1998—),男,硕士研究生,主要从事水污染控制研究,850578051@qq.com

    通讯作者:

    李攀(1980—),女,副教授,主要从事微纳米气泡应用研究,lipan@tongji.edu.cn

  • 中图分类号: X703

Study on micro-nanobubble control of membrane fouling in vacuum membrane distillation of high salt organic wastewater

  • 摘要:

    为探究真空膜蒸馏处理高盐废水过程中有机物和盐类对膜污染的贡献以及微纳米气泡对不同类型膜污染的控制作用,选取腐殖酸、牛血清蛋白、海藻酸钠为典型有机污染物代表,分别考察单一有机物、有机物与盐共存对膜污染的影响以及采用微纳米气泡曝气对上述情况产生的膜污染的控制作用。结果表明:3种有机物中,海藻酸钠造成的膜污染最严重,当海藻酸钠浓度为100 mg/L时,真空膜蒸馏系统运行7 h后,相对膜通量降至67.07%;腐殖酸与盐共存造成的复合污染最严重,当进料液腐殖酸浓度分别为10、50和100 mg/L时,系统运行7 h后,相对膜通量分别降至36.33%、33.15%和20.59%;3种有机物与盐共存时,造成的膜污染比单一有机物与盐共存时更严重;微纳米气泡可以有效控制有机物与盐共存时对真空膜蒸馏系统造成的复合污染。

     

  • 图  1  真空膜蒸馏-微气泡曝气装置示意

    (1) —料液箱(带加热棒);(2)—磁力泵;(3)—旁路调节阀;(4)—液体流量计;(5)—微气泡发生装置;(6)—温度计;(7)—膜组件;(8)—压力表;(9)—冷凝管;(10)—冷却水循环装置;(11)—储液罐;(12)—真空泵

    Figure  1.  Schematic diagram of vacuum membrane distillation-microbubble aeration device

    图  2  单一有机物的相对膜通量

    Figure  2.  Membrane fouling flux of single organic matter

    图  3  单一有机物污染膜表面形貌对比

    注:进料有机物浓度均为100 mg/L。

    Figure  3.  Comparison of surface morphology of single organic polluted membrane

    图  4  3种有机物与盐共存对膜通量的影响

    Figure  4.  Influence of the coexistence of three organic compounds and salts on membrane flux

    图  5  不同浓度HA与盐共存时对膜通量的影响

    Figure  5.  Influence of different concentrations of HA and salts on membrane flux

    图  6  微纳米气泡对HA和盐类产生的膜污染的控制效果

    Figure  6.  Control effect of micro-nanobubbles on membrane fouling produced by HA and salts

    图  7  含盐进料液电导率随时间变化

    Figure  7.  Conductivity change with time of saline feed solution with time

    图  8  不同浓度HA含盐进料液出水电导率随时间变化

    Figure  8.  Variation of effluent conductivity with time of feed solution containing salt and HA at different concentrations

    图  9  不同浓度HA含盐类进料液时污染膜表面形态

    Figure  9.  Surface morphology of contaminated membrane with different concentrations of HA and salt feed solution

    图  10  HA+SA+BSA+盐类复合污染对VDM系统相对膜通量的影响

    Figure  10.  Influence of HA+SA+BSA+ salt combined pollution on relative membrane flux of VDM system

    图  11  进料液含HA+SA+BSA+盐类时污染膜表面形态

    Figure  11.  Surface morphology of contaminated membrane with the feed solution containing HA+SA+BSA+ salts

  • [1] ALKLAIBI A M, LIOR N. Membrane-distillation desalination: status and potential[J]. Desalination,2005,171(2):111-131. doi: 10.1016/j.desal.2004.03.024
    [2] BAGHEL R, UPADHYAYA S, SINGH K, et al. A review on membrane applications and transport mechanisms in vacuum membrane distillation[J]. Reviews in Chemical Engineering,2017,34(1):73-106. doi: 10.1515/revce-2016-0050
    [3] ZHANG Y G, PENG Y L, JI S L, et al. Review of thermal efficiency and heat recycling in membrane distillation processes[J]. Desalination,2015,367:223-239. doi: 10.1016/j.desal.2015.04.013
    [4] DRIOLI E, ALI A, MACEDONIO F. Membrane distillation: recent developments and perspectives[J]. Desalination,2015,356:56-84. doi: 10.1016/j.desal.2014.10.028
    [5] NAIDU G, JEONG S, KIM S J, et al. Organic fouling behavior in direct contact membrane distillation[J]. Desalination,2014,347:230-239. doi: 10.1016/j.desal.2014.05.045
    [6] WANG P, CHUNG T S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring[J]. Journal of Membrane Science,2015,474:39-56. doi: 10.1016/j.memsci.2014.09.016
    [7] REZAEI M, WARSINGER D M, LIENHARD V J H, et al. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention[J]. Water Research,2018,139:329-352. doi: 10.1016/j.watres.2018.03.058
    [8] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere,2011,84(9):1175-1180. doi: 10.1016/j.chemosphere.2011.05.054
    [9] KHUNTIA S, MAJUMDER S K, GHOSH P. Microbubble-aided water and wastewater purification: a review[J]. Reviews in Chemical Engineering,2012,28(4/5/6):191-221.
    [10] LOHSE D, ZHANG X H. Surface nanobubbles and nanodroplets[J]. Reviews of Modern Physics,2015,87(3):981-1035. doi: 10.1103/RevModPhys.87.981
    [11] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science,2017,246:40-51. doi: 10.1016/j.cis.2017.06.011
    [12] SUN Y J, XIE G Y, PENG Y L, et al. Stability theories of nanobubbles at solid-liquid interface: a review[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,495:176-186.
    [13] YASUI K, TUZIUTI T, KANEMATSU W. Mysteries of bulk nanobubbles (ultrafine bubbles): stability and radical formation[J]. Ultrasonics Sonochemistry,2018,48:259-266. doi: 10.1016/j.ultsonch.2018.05.038
    [14] LEE E J, KIM Y H, KIM H S, et al. Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse[J]. Environmental Science and Pollution Research,2015,22(11):8451-8459. doi: 10.1007/s11356-014-3928-y
    [15] WATABE T, MATSUYAMA K, TAKAHASHI T, et al. The effect of microbubbles on membrane fouling caused by different foulants[J]. Desalination and Water Treatment,2016,57(21):9558-9568. doi: 10.1080/19443994.2015.1031186
    [16] DING Z W, LIU L Y, LIU Z, et al. The use of intermittent gas bubbling to control membrane fouling in concentrating TCM extract by membrane distillation[J]. Journal of Membrane Science,2011,372(1/2):172-181.
    [17] YE Y B, YU S L, HOU L A, et al. Microbubble aeration enhances performance of vacuum membrane distillation desalination by alleviating membrane scaling[J]. Water Research,2019,149:588-595. doi: 10.1016/j.watres.2018.11.048
    [18] CHEN G Z, YANG X, WANG R, et al. Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation[J]. Desalination,2013,308:47-55. doi: 10.1016/j.desal.2012.07.018
    [19] CHEN G Z, YANG X, LU Y H, et al. Heat transfer intensification and scaling mitigation in bubbling-enhanced membrane distillation for brine concentration[J]. Journal of Membrane Science,2014,470:60-69. doi: 10.1016/j.memsci.2014.07.017
    [20] CUI Z F, CHANG S, FANE A G. The use of gas bubbling to enhance membrane processes[J]. Journal of Membrane Science,2003,221(1/2):1-35.
    [21] JIANG L J, CHEN L, ZHU L. Fouling process of membrane distillation for seawater desalination: an especial focus on the thermal-effect and concentrating-effect during biofouling[J]. Desalination,2020,485:114457. doi: 10.1016/j.desal.2020.114457
    [22] 赵文, 夏圣骥, 彭浩轩.PTFE超滤膜对水中三种典型天然有机物的去除及其膜污染机制[J]. 净水技术,2018,37(10):33-38.

    ZHAO W, XIA S J, PENG H X. Removal of three typical natural organic matters in water by PTFE ultrafiltration membrane process and the mechanism of membrane fouling[J]. Water Purification Technology,2018,37(10):33-38.
    [23] 孟倩. 三种典型污染物对超滤膜的污染研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [24] TANG C Y, KWON Y N, LECKIE J O. Fouling of reverse osmosis and nanofiltration membranes by humic acid: effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science,2007,290(1/2):86-94.
    [25] JONES K L, O’MELIA C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. Journal of Membrane Science,2000,165(1):31-46. ⊗ doi: 10.1016/S0376-7388(99)00218-5
  • 加载中
图(11)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  233
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27

目录

    /

    返回文章
    返回