Current utilization, disposal and environmental management of drilling cuttings from oil and gas field exploitation
-
摘要:
油气开采过程会产生大量水基钻屑和少量油基钻屑。当前,油气田钻井岩屑大多采用不落地处理工艺进行初步收集处理。钻井岩屑通常具有较高的pH、盐离子浓度、COD和含油量(油基钻屑)等,其合理处理处置是油气田绿色发展面临的一大难题。对比分析了国内外钻井岩屑的环境管理现状,系统梳理了我国钻屑环境管理方面存在的问题。同时,基于钻井岩屑污染特性综述了其后续资源化与无害化技术的研究和应用现状,并分析了各技术优缺点和处理效果。最后,对我国钻屑利用与处置提出了“建立水基钻屑分级分类管理制度、完善钻屑利用处置过程环境管理体系和加强钻屑源头减量和末端利用”的对策建议。
Abstract:Large quantities of water-based drilling cuttings and small quantities of oil-based drilling cuttings are produced in the process of oil and gas exploitation. Currently, drilling cuttings are preliminarily collected and processed by non-landing treatment in most oil and gas fields. The drilling cuttings have the characteristics of high pH, high salt ion concentrations, high COD, and high oil content for oil-based drilling cuttings, and therefore, the rational treatment and disposal of drilling cuttings is a difficulty for the green development of oil and gas fields. The current environmental management of drilling cuttings in China and other countries was compared and analyzed, and the corresponding problems of environmental management in China were identified. Based on the pollution characteristics of drilling cuttings, the research and application status of the follow-up resource and harmless technologies were summarized, and the treatment effect, the advantages and disadvantages of each technology were analyzed. Finally, some suggestions were put forward for the utilization and disposal of drilling cuttings in China, including establishing a water-based classification management system, improving the environmental management system for their utilization and disposal process, and strengthening the source reduction and end uses.
-
表 1 主要钻井液类别、药剂种类、适用范围及污染特性
Table 1. Summary of main drilling fluid categories, agent types, application scope and pollution characteristics
类型 组成特点 药剂种类 适用范围 污染特性 清水基钻井液 以水为连续相,但含水率超过90%,药剂使用量仅为4%~6%,严格意义上属于水基钻井液 膨润土、纯碱、烧碱、羧甲基纤维素等 常用于一开、二开上部钻井 药剂使用量中天然物质膨润土占比超80%,其他种类药剂添加量低,在6%~8%以内,一般无污染 水基钻井液 我国最常用的钻井液体系,其以水为连续相,相比清水基钻井液,药剂使用量增至20%~40%,含水率降至55%~70%,且随井深增加,二者分别呈现出上升和下降的趋势[8] 膨润土、纯碱、烧碱、聚丙烯酰胺、聚合物降滤失剂、防塌剂、润滑剂、降黏剂、重晶石粉等 常用于二开下部、三开钻井 pH高、COD高、重金属及可溶性盐浓度高 油基钻井液 以柴油、白油、原油等为连续相配置的钻井液,油类物质作为油基钻井液的主要成分,其含量一般为30%~60%[11] 膨润土、氧化沥青、乳化剂、润湿剂、降滤失剂、加重剂等 常用于三开钻井,也用于处理某些特殊情景(如高温钻井、水平井和作解卡液等) 油含量高、pH高、COD高、重金属及可溶性盐浓度高 表 2 国外不同地区钻屑的利用途径及含油量限值
Table 2. Disposal methods and oil content limits of drilling cuttings in different regions abroad
国家/标准名称 标准限值 加拿大Saskatchewan省发布的GL 99-01《Saskatchewan钻井废物管理指南》[16] 在征得土地所有人同意方可地耕处置低毒性矿油基钻井液,且地耕前需用堆肥、生物反应器等去除大部分油类,地耕后土壤中碳原子数11~22的石油烃含量应小于0.1%,碳原子数23~60的石油烃含量应小于0.4% 加拿大Alberta省能源利用委员发布的Interim Directive ID 99-4《油田废弃物进入垃圾填埋场》[17] 有人工防护层,但没有滤液收集处理系统的Ⅱ类填埋场的入场废物总石油烃(THP)含量不得超过3%;仅有自然黏土防护层的Ⅱ类填埋场的入场废物THP含量不得超过2% 加拿大Alberta省发布的Directive 058《关于上游石油工业油田废物管理要求》[18] 用于铺路时,废物THP含量不得超过5%;排入土壤环境时,废物THP含量不得超过2% 欧洲环境署发布的OSPAR Recommendation 2006/5《关于近海钻屑堆的管理制度》[19] 水中油损失速率不超过10 t/a且污染持久性不超过500 km2·a的钻屑堆可原地自然降解 法国[20] 排入湿地地区土壤中时,废物THP含量不得超过0.5%;排入旱地地区土壤中时,废物THP含量不得超过2% 新加坡[21] 填埋处置废物THP含量不得高于1.0% 卡塔尔[21] 排入土壤环境时,废物THP含量应小于0.1% 巴林群岛和迪拜[22] 排入土壤环境时,废物THP含量应小于1% 沙特阿拉伯[22] 排入土壤环境时,废物THP含量应小于5% 表 3 我国水基钻屑利用处置技术汇总
Table 3. Summary of water-based drilling cuttings disposal and utilization technologies in China
利用处置方式 技术特点 优势 劣势 坑内填埋技术 废液池中的钻屑经自然沉降后,残余固相就地填埋 简单易行;就地填埋,无需运费,成本低 仅适于处理污染小的清水基钻屑;环境隐患大 固化技术 钻屑与水泥、石膏等固化剂胶结形成稳定、低浸出且有一定强度的固化体,常用固化剂单价在250~17 000元/t不等,单井固化费用约为20 000~55 000元[31] 操作简单;技术成熟;水基钻屑可与Ca(OH)2反应生成水化硅酸钙与钙矾石,提高固化体强度、减少污染物浸出;固化体可用作建筑材料 增容大(约20%);对有机物[32]及氯盐[33]固化效果不佳;固化不均匀、风化或雨水淋溶等可能导致二次污染[34] 建材资源化 钻屑的主要化学组成为SiO2(46.22%)、CaO(14.72%)、Al2O3(11.80%)、Fe2O3(6.65%)[35],与粉煤灰、黏土等组成类似,是良好的建筑原料替代品 实现钻屑的二次利用,具有一定的经济效益 技术尚不成熟;产品附加值低且缺乏市场竞争力 -
[1] 自然资源部. 2020年度全国石油天然气资源勘察开采通报[A/OL]. (2021-09-17)[2021-10-25]. http://gi.mnr.gov.cn/202109/t20210918_2681270.html. [2] WANG C Q, XIONG D M. Leaching assessment of aerated concrete made of recycled shale gas drilling cuttings: particular pollutants, physical performance and environmental characterization[J]. Journal of Cleaner Production,2021,282:125099. doi: 10.1016/j.jclepro.2020.125099 [3] 王之超, 何洁, 张曼丽, 等.油基钻井岩屑固化体中多环芳烃释放特征[J]. 环境工程技术学报,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013WANG Z C, HE J, ZHANG M L, et al. Release characteristics of PAHs in oil-based drilling cuttings solidified body[J]. Journal of Environmental Engineering Technology,2020,10(4):647-652. doi: 10.12153/j.issn.1674-991X.20200013 [4] 高庆国, 章媛媛, 俞音, 等.新疆油气田钻井岩屑中特征污染物控制因子筛选研究[J]. 新疆环境保护,2019,41(2):1-5.GAO Q G, ZHANG Y Y, YU Y, et al. Control factor screening for specific pollutants in drilling cuttings from Xinjiang oil and gas fields[J]. Environmental Protection of Xinjiang,2019,41(2):1-5. [5] 杨德敏, 袁建梅, 程方平, 等.油气开采钻井固体废物处理与利用研究现状[J]. 化工环保,2019,39(2):129-136. doi: 10.3969/j.issn.1006-1878.2019.02.003YANG D M, YUAN J M, CHENG F P, et al. Current situation of treatment and utilization of drilling solid waste in oil and gas exploitation[J]. Environmental Protection of Chemical Industry,2019,39(2):129-136. doi: 10.3969/j.issn.1006-1878.2019.02.003 [6] 孙静文, 许毓, 刘晓辉, 等.油基钻屑处理及资源回收技术进展[J]. 石油石化节能,2016,6(1):30-33. doi: 10.3969/j.issn.2095-1493.2016.01.014SUN J W, XU Y, LIU X H, et al. Progress of oil-based mud treatment and resource recovery technology[J]. Energy Conservation in Petroleum & Petrochemical Industry,2016,6(1):30-33. doi: 10.3969/j.issn.2095-1493.2016.01.014 [7] 胡小刚, 康涛, 柴占文, 等.国外钻井岩屑处理技术与国内应用研制分析[J]. 石油机械,2009,37(9):159-161. [8] 韩桂梅, 周长波, 赵传铭, 等. 苏里格气田开采水基钻井固体废弃物污染特性分析与评价[C]//2020中国环境科学学会科学技术年会论文集(第二卷), 北京: 中国环境科学学会, 2020: 1108-1114. [9] 刘汉军, 陈强, 陈立荣, 等.不同钻井液体系水基钻井固废特性及土地利用价值分析[J]. 石油与天然气化工,2020,49(5):116-123.LIU H J, CHEN Q, CHEN L R, et al. Analysis of the different water-based drilling fluid system solid waste characteristic and the value of land use[J]. Chemical Engineering of Oil & Gas,2020,49(5):116-123. [10] 吴娜, 聂志强, 李开环, 等.页岩气开采钻井固体废物的污染特性[J]. 中国环境科学,2019,39(3):1094-1100.WU N, NIE Z Q, LI K H, et al. Pollution characteristics of solid waste in shale gas mining drilling[J]. China Environmental Science,2019,39(3):1094-1100. [11] 李世刚. 废弃油基钻井液环境影响及处理技术研究[D]. 大庆: 东北石油大学, 2012. [12] 陈则良. 页岩气油基钻屑的污染特性和蒸汽浸洗研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2017. [13] XU T, WANG L A, WANG X, et al. Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: a human health risk assessment for the workers[J]. Ecotoxicology and Environmental Safety,2018,165:160-163. doi: 10.1016/j.ecoenv.2018.08.104 [14] 江丽, 刘春艳, 王红娟, 等.国内外页岩气开发环境管理现状及对比[J]. 天然气工业,2021,41(12):146-155.JIANG L, LIU C Y, WANG H J, et al. Domestic and foreign environmental management of shale gas development: status and comparison[J]. Natural Gas Industry,2021,41(12):146-155. [15] 任磊.美国油气开发钻井废物排放管理法规浅析[J]. 油气田环境保护,2004,14(2):4-6.REN L. Discussion of waste discharge management rules for oil and gas recovery and drilling in USA[J]. Environmental Protection of Oil & Gas Fields,2004,14(2):4-6. [16] SASKATCHEWAN M E R P D B. GL 99-01 saskatchewan drilling waste management guidelines[S/OL]. [2022-01-20]. https://pubsaskdev.blob.core.windows.net/pubsask-prod/84467/84467-PDB_ENV_09_GL99-01_Drilling_Waste_Management_Guidelines.pdf. [17] HALLA S. Deposition of oil field waste into landfills: the Alberta situation[M/OL]. [2022-01-20]. https://www.osti.gov/etdeweb/biblio/20017798. [18] REGULATOR A E. Directive 058 oilfield waste management requirements for the upstream petroleum industry[S/OL]. [2022-01-20]. https://www.aer.ca/regulating-development/rules-and-directives/directives/directive-058. [19] EUROPEAN E A. OSPAR recommendation 2006/5 on a management regime for offshore cuttings piles[S/OL]. [2022-01-20]. https://rod.eionet.europa.eu/obligations/595. [20] 王会, 谢康, 向龙斌.关于含油污泥处理现状研究[J]. 环境与可持续发展,2016,41(5):122-127. doi: 10.3969/j.issn.1673-288X.2016.05.035 [21] 赵敏, 张海玲, 杨琴. 国内外含油污泥处理处置的标准研究[C]// 2014中国环境科学学会学术年会(第三章). 北京: 中国环境科学学会, 2014: 625-628. [22] 韩克江, 裴红, 谢加才. 浅析基于石油烃的国内外含油污泥处理标准[C]//中国油气田地面工程技术交流大会论文集. 北京: 中国石油学会, 2013: 36-43. [23] 王树强, 王立辉, 曾晓辉, 等.废弃钻井泥浆处理相关标准及法规浅析[J]. 石油工业技术监督,2016,32(7):39-41. doi: 10.3969/j.issn.1004-1346.2016.07.012WANG S Q, WANG L H, ZENG X H, et al. Analysis of relevant standards and regulations for treatment of waste drilling mud[J]. Technology Supervision in Petroleum Industry,2016,32(7):39-41. doi: 10.3969/j.issn.1004-1346.2016.07.012 [24] 杨子健, 刘阳生.水基钻井固体废物处理处置技术研究进展[J]. 环境工程,2021,39(10):143-149.YANG Z J, LIU Y S. Research progress on treatment and disposal of water-based drilling solid waste[J]. Environmental Engineering,2021,39(10):143-149. [25] 王茂仁. 新疆油田钻井水基固液废弃物不落地处理技术研究[D]. 成都: 西南石油大学, 2017. [26] 刘宇程, 吴冕, 陈明燕.钻井废泥浆固化处理技术研究进展及展望[J]. 环境科学与技术,2010,33(增刊 1):534-537.LIU Y C, WU M, CHEN M Y. Research progress and prospection on technology of solidification of waste drilling mud treatment[J]. Environmental Science & Technology,2010,33(Suppl 1):534-537. [27] 王朝强, 梅绪东, 张春, 等.页岩气水基钻屑制备烧结砖性能研究[J]. 非金属矿,2018,41(3):43-45. doi: 10.3969/j.issn.1000-8098.2018.03.014WANG C Q, MEI X D, ZHANG C, et al. Research on the preparation of sintered brick by water-based drilling cuttings of shale gas[J]. Non-Metallic Mines,2018,41(3):43-45. doi: 10.3969/j.issn.1000-8098.2018.03.014 [28] LIU D S, WANG C Q, MEI X D, et al. Environmental performance, mechanical and microstructure analysis of non-fired bricks containing water-based drilling cuttings of shale gas[J]. Construction and Building Materials,2018,183:215-225. doi: 10.1016/j.conbuildmat.2018.06.107 [29] MOSTAVI E, ASADI S, UGOCHUKWU E. Feasibility study of the potential use of drill cuttings in concrete[J]. Procedia Engineering,2015,118:1015-1023. doi: 10.1016/j.proeng.2015.08.543 [30] LI B, WEI S, ZHEN Y W. An effective recycling direction of water-based drilling cuttings and phosphogypsum co-processing in road cushion layer[J]. Environmental Science and Pollution Research International,2020,27(14):17420-17424. doi: 10.1007/s11356-020-08406-y [31] 胡祖彪, 张建卿, 王清臣, 等.CQGH-1复合固化剂在长庆钻井清洁化生产中的应用[J]. 环境科技,2016,29(1):32-35. doi: 10.3969/j.issn.1674-4829.2016.01.008HU Z B, ZHANG J Q, WANG Q C, et al. Application of CQGH-1 composite curing agent in drilling cleaning process in Changqing[J]. Environmental Science and Technology,2016,29(1):32-35. doi: 10.3969/j.issn.1674-4829.2016.01.008 [32] LEONARD S A, STEGEMANN J A. Stabilization/solidification of petroleum drill cuttings: Leaching studies[J]. Journal of Hazardous Materials,2010,174(1/2/3):484-491. [33] AL-ANSARY M S, AL-TABBAA A. Stabilisation/solidification of synthetic petroleum drill cuttings[J]. Journal of Hazardous Materials,2007,141(2):410-421. doi: 10.1016/j.jhazmat.2006.05.079 [34] 张春, 王朝强, 张思兰, 等.水基钻屑固化填埋对土壤环境影响变化趋势研究[J]. 安全与环境学报,2018,18(5):1997-2002.ZHANG C, WANG C Q, ZHANG S L, et al. On changing trend of the effect of water-based drilling cutting solidification landfill on soil environment[J]. Journal of Safety and Environment,2018,18(5):1997-2002. [35] 韩桂梅, 周长波, 方刚, 等.天然气开采钻井固体废物处理处置及资源化技术的应用现状与展望[J]. 环境工程技术学报,2021,11(3):582-590.HAN G M, ZHOU C B, FANG G, et al. Application status and prospects of solid waste disposal and resource utilization technology in natural gas extraction drilling[J]. Journal of Environmental Engineering Technology,2021,11(3):582-590. [36] 赵雄虎, 王风春.废弃钻井液处理研究进展[J]. 钻井液与完井液,2004,21(2):43-48. doi: 10.3969/j.issn.1001-5620.2004.02.011ZHAO X H, WANG F C. Research development of waste drilling fluids disposal[J]. Driuing Fluid and Completion Fluld,2004,21(2):43-48. doi: 10.3969/j.issn.1001-5620.2004.02.011 [37] 陈刚, 王鹏, 赵毅, 等.废弃钻井液处理技术研究与应用进展[J]. 钻井液与完井液,2020,37(1):1-8.CHEN G, WANG P, ZHAO Y, et al. Progress in study and application of waste mud disposal technologies[J]. Drilling Fluid & Completion Fluid,2020,37(1):1-8. [38] 左京杰, 张鑫, 杨勇.含油钻屑处理技术现状及发展趋势[J]. 油气田环境保护,2019,29(6):11-15. doi: 10.3969/j.issn.1005-3158.2019.06.003ZUO J J, ZHANG X, YANG Y. Current status and development trend of oily drilling cuttings treatment[J]. Environmental Protection of Oil & Gas Fields,2019,29(6):11-15. doi: 10.3969/j.issn.1005-3158.2019.06.003 [39] 项先忠, 赵雄虎, 何涛, 等.钻屑回注技术研究进展及发展趋势[J]. 中国海上油气,2009,21(4):267-271. doi: 10.3969/j.issn.1673-1506.2009.04.013XIANG X Z, ZHAO X H, HE T, et al. Research progress and development tendency of drilling cuttings re-injection technology[J]. China Offshore Oil and Gas,2009,21(4):267-271. doi: 10.3969/j.issn.1673-1506.2009.04.013 [40] 安文忠, 陈建兵, 牟小军, 等.钻屑回注技术及其在国内油田的首次应用[J]. 石油钻探技术,2003,31(1):22-25. doi: 10.3969/j.issn.1001-0890.2003.01.008AN W Z, CHEN J B, MOU X J, et al. Applications of cuttings re-injection technology used in Penglai19-3 oilfield[J]. Petroleum Drilling Techniques,2003,31(1):22-25. doi: 10.3969/j.issn.1001-0890.2003.01.008 [41] 李学庆, 杨金荣, 尹志亮, 等.油基钻井液含油钻屑无害化处理工艺技术[J]. 钻井液与完井液,2013,30(4):81-83.LI X Q, YANG J R, YIN Z L, et al. Novel harmless treating technology of oily cuttings[J]. Drilling Fluid & Completion Fluid,2013,30(4):81-83. [42] BOUTAMMINE H, SALEM Z, KHODJA M. Petroleum drill cuttings treatment using stabilization/solidification and biological process combination[J]. Soil and Sediment Contamination:an International Journal,2020,29(4):369-383. doi: 10.1080/15320383.2020.1722982 [43] 刘雅雪. 页岩气含油钻屑降解菌的选育及降解技术研究[D]. 成都: 成都理工大学, 2019. [44] CHEN L R, HUANG M, JIANG X B, et al. Pilot tests of microbe-soil combined treatment of waste drilling sludge[J]. Natural Gas Industry B,2015,2(2/3):270-276. [45] LIU H, LI J B, ZHAO M, et al. Remediation of oil-based drill cuttings using low-temperature thermal desorption: performance and kinetics modeling[J]. Chemosphere,2019,235:1081-1088. doi: 10.1016/j.chemosphere.2019.07.047 [46] 孙根行, 王丽芳, 符丹, 等.废弃油基钻井岩屑焚烧处理基础[J]. 钻井液与完井液,2017,34(3):59-63. doi: 10.3969/j.issn.1001-5620.2017.03.011SUN G X, WANG L F, FU D, et al. Burning of drill cuttings from wells drilled with waste oil base drilling fluid[J]. Drilling Fluid & Completion Fluid,2017,34(3):59-63. doi: 10.3969/j.issn.1001-5620.2017.03.011 [47] 黄慧, 聂志强, 孟棒棒, 等.不同处理工艺页岩气钻井岩屑的污染特性[J]. 环境科学研究,2020,33(3):777-782.HUANG H, NIE Z Q, MENG B B, et al. Pollution characteristics of typical field shale gas drilling cuttings with different treatment processes[J]. Research of Environmental Sciences,2020,33(3):777-782. [48] LIU T T, TIAN L F, YANG L Y, et al. Emissions of BTEXs, NMHC, PAHs, and PCDD/fs from co-processing of oil-based drilling cuttings in brick kilns[J]. Journal of Environmental Management,2022,304:114170. doi: 10.1016/j.jenvman.2021.114170 [49] HU G J, LIU H, CHEN C, et al. Low-temperature thermal desorption and secure landfill for oil-based drill cuttings management: pollution control, human health risk, and probabilistic cost assessment[J]. Journal of Hazardous Materials,2021,410:124570. doi: 10.1016/j.jhazmat.2020.124570 [50] 黄思雨, 王嫣云, 周博逊, 等.页岩气开发油基钻屑-单组分生物质共热解特性[J]. 环境科学研究,2019,32(6):1074-1080.HUANG S Y, WANG Y Y, ZHOU B X, et al. Co-pyrolysis characteristics of oil-based drill cuttings and one-component biomass in shale gas exploitation[J]. Research of Environmental Sciences,2019,32(6):1074-1080. [51] 韩桂梅, 党春阁, 郭亚静, 等.天然气开采水基钻井固体废物污染特性及一体化处理技术效果:以苏里格气田为例[J]. 环境工程技术学报,2022,12(3):967-974. doi: doi:10.12153/j.issn.1674-991X.20210197HAN G M, DANG C G, GUO Y J, et al. Pollution characteristics and effect of integrated treatment technology of solid wastes from water-based drilling for natural gas exploitation: taking Sulige Gas Field as an example[J]. Journal of Environmental Engineering Technology,2022,12(3):967-974. doi: doi:10.12153/j.issn.1674-991X.20210197 [52] 许世佩, 王超, 李庆远, 等.氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报,2022,73(4):1724-1731.XU S P, WANG C, LI Q Y, et al. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings[J]. CIESC Journal,2022,73(4):1724-1731. [53] 王思凡, 胡东锋, 李前春.超临界CO2萃取法处理油基钻屑工艺实验[J]. 石油钻采工艺,2019,41(5):597-602.WANG S F, HU D F, LI Q C. Experimental study on the oil-based drilling cuttings treatment technology based on supercritical CO2 extraction method[J]. Oil Drilling & Production Technology,2019,41(5):597-602. [54] KHANPOUR R, SHEIKHI-KOUHSAR M R, ESMAEILZADEH F, et al. Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction[J]. The Journal of Supercritical Fluids,2014,88:1-7. doi: 10.1016/j.supflu.2014.01.004 [55] RODRÍGUEZ-LÓPEZ L C, OJEDA-MORALES M E, CÓRDOVA-BAUTISTA Y, et al. Recovery of impregnated hydrocarbon in drill cuttings using supercritical carbon dioxide[J]. Journal of Environmental Management,2021,285:112134. doi: 10.1016/j.jenvman.2021.112134 [56] OLASANMI I O, THRING R W. Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils[J]. Journal of Advanced Research,2020,21:79-90. doi: 10.1016/j.jare.2019.07.003 [57] CHEN G, CHENG C, ZHANG J, et al. Synergistic effect of surfactant and alkali on the treatment of oil sludge[J]. Journal of Petroleum Science and Engineering,2019,183:106420. doi: 10.1016/j.petrol.2019.106420 [58] de CASTRO DANTAS T N, SILVA D N N, DANTAS NETO A A, et al. Treatment of drill cuttings using microemulsion[J]. Journal of Petroleum Exploration and Production Technology,2020,10(3):1243-1251. doi: 10.1007/s13202-019-00813-3 [59] YE Y, LI J X, ZHANG Q W, et al. Nanoemulsion for oil-contaminated oil-based drill cuttings removel in lab[J]. International Journal of Hydrogen Energy,2017,42(29):18734-18740. doi: 10.1016/j.ijhydene.2017.05.011 [60] 付韶波, 马跃, 岳长涛.油基钻屑无害化处理和资源化利用研究进展[J]. 应用化工,2021,50(8):2207-2214. doi: 10.3969/j.issn.1671-3206.2021.08.037FU S B, MA Y, YUE C T. Research progress on harmless treatment and resource utilization of oil-based drill cuttings[J]. Applied Chemical Industry,2021,50(8):2207-2214. doi: 10.3969/j.issn.1671-3206.2021.08.037 [61] 孙根行, 符丹, 王丽芳, 等.热洗法处理页岩气开采油基钻屑工艺研究[J]. 现代化工,2017,37(3):104-107.SUN G X, FU D, WANG L F, et al. Research on hot washing process of shale gas oil-based drill cuttings[J]. Modern Chemical Industry,2017,37(3):104-107. ⊕