Degradation efficiency and influencing factors of organic contaminants in O3-H2O2 system based on ozone micro-nanobubbles
-
摘要:
针对传统臭氧氧化技术传质效率低和易产生消毒副产物的问题,采用臭氧微纳米气泡联合H2O2氧化体系提高传质效率,增加氧化能力及减少消毒副产物的产生。通过试验模拟研究了臭氧速率、H2O2浓度、地下水常见地球化学参数对2-氯酚降解效果的影响,并研究了O3-H2O2体系对典型环境污染物的降解效果。结果表明:臭氧速率在40 mg/min时,臭氧利用率最高;H2O2浓度为0.5 mmol/L、pH为9时,O3-H2O2体系对2-氯酚的降解效果最佳;Cl−、CO3 2−/HCO3 −、天然有机质的存在对O3-H2O2体系均具有抑制作用;O3-H2O2体系对抗生素类、氯酚类、氯代烃、含硝基类有机物4类典型的环境污染物都具有较好的降解效果。
Abstract:Aiming at solving the problem of low mass transfer efficiency and easy generation of disinfection by-products of traditional ozonation technology, ozone micro-nanobubbles combined with H2O2 oxidation system was adopted to improve mass transfer efficiency and oxidation capacity and reduce the production of disinfection by-products. The effects of ozone flow rate, H2O2 concentration, and common groundwater geochemical parameters on the degradation of 2-chlorophenol were investigated, and the application of the O3-H2O2 system to typical environmental pollutants was studied. The experimental results showed that the ozone utilization rate was the highest when the ozone rate was 40 mg/min; O3-H2O2 system had the best degradation efficiency on 2-chlorophenol when H2O2 concentration was 0.5 mmol/L and pH=9; the existence of Cl−, CO3 2−/HCO3 − and natural organic matter inhibited O3-H2O2 system; O3-H2O2 system had good degradation effects on four typical environmental pollutants including antibiotics, chlorophenols, chlorinated hydrocarbons, and nitro-containing organic compounds.
-
Key words:
- ozone /
- hydrogen peroxide /
- micro-nanobubbles /
- advanced oxidation /
- bromate
-
图 8 O3- H2O2体系中溴酸根的可能的产生路径[28]
Figure 8. Possible production pathways of bromate in O3-H2O2 system
表 1 O3-H2O2体系降解2-氯酚准一级动力学模型参数
Table 1. Pseudo-first-order kinetic model parameters for degradation of 2-chlorophenol in O3-H2O2 system
H2O2浓度/( mmol/L) K1/min−1 R2 H2O2:0.5 −0.022 04 0.907 O3-H2O2:0 −0.436 75 0.999 O3-H2O2:0.05 −0.477 18 0.995 O3-H2O2:0.10 −0.483 67 0.983 O3-H2O2:0.20 −0.558 07 0.998 O3-H2O2:0.50 −0.599 61 0.998 O3-H2O2:1.00 −0.483 26 0.997 -
[1] 宋志慧, 孙欣欣, 李捍东.斑马鱼对3种氯酚的富集作用及其SOD酶活性应激反应研究[J]. 环境工程技术学报,2014,4(4):287-292. doi: 10.3969/j.issn.1674-991X.2014.04.047SONG Z H, SUN X X, LI H D. Study on bioconcentration of three chlorophenols in zebrafish and SOD activity stress action[J]. Journal of Environmental Engineering Technology,2014,4(4):287-292. doi: 10.3969/j.issn.1674-991X.2014.04.047 [2] MARTÍNEZ-JARDINES M, MARTÍNEZ-HERNÁNDEZ S, TEXIER A C, et al. 2-Chlorophenol consumption by cometabolism in nitrifying SBR reactors[J]. Chemosphere,2018,212:41-49. doi: 10.1016/j.chemosphere.2018.08.064 [3] 任越中, 张嘉雯, 魏健, 等.铈负载改性天然沸石催化臭氧氧化水中青霉素G[J]. 环境工程技术学报,2019,9(1):28-35. doi: 10.3969/j.issn.1674-991X.2019.01.005REN Y Z, ZHANG J W, WEI J, et al. Catalytic ozonation of penicillin G in aqueous phase using modified natural zeolite supported cerium[J]. Journal of Environmental Engineering Technology,2019,9(1):28-35. doi: 10.3969/j.issn.1674-991X.2019.01.005 [4] 张佳丽, 魏健, 任越中, 等.臭氧氧化降解水中青霉素G特性和动力学特征[J]. 环境科学研究,2019,32(7):1231-1238.ZHANG J L, WEI J, REN Y Z,et al. Degradation charactistics and kinetics of penicillin G in water by ozone oxidation[J]. Research of Environmental Sciences,2019,32(7):1231-1238. [5] 宋江燕, 李方鸿, 吴根义, 等.氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J]. 环境科学研究,2022,35(2):478-487.SONG J Y, LI F H, WU G Y,et al. Degradation of climbazole by ozonation: influencing factors and degradation products[J]. Research of Environmental Sciences,2022,35(2):478-487. [6] 马艳, 张鑫, 韩小蒙, 等.臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术,2019,38(8):64-67.MA Y, ZHANG X, HAN X M, et al. Application of micro-nano ozone bubble technology in water treatment: a review[J]. Water Purification Technology,2019,38(8):64-67. [7] ZHENG T L, WANG Q H, ZHANG T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials,2015,287:412-420. doi: 10.1016/j.jhazmat.2015.01.069 [8] HU L M, XIA Z R. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials,2018,342:446-453. doi: 10.1016/j.jhazmat.2017.08.030 [9] 周洪政, 刘平, 张静, 等.微气泡臭氧催化氧化-生化耦合处理难降解含氮杂环芳烃[J]. 中国环境科学,2017,37(8):2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021ZHOU H Z, LIU P, ZHANG J, et al. Removal of refractory nitrogen-containing heterocyclic aromatics by combination treatment of microbubble catalytic ozonation and biological process[J]. China Environmental Science,2017,37(8):2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021 [10] 夏志然, 胡黎明, 赵清源. 地下水原位修复的臭氧微纳米气泡技术研究[J]. 地下空间与工程学报, 2014, 10(增刊2): 2006-2011.XIA Z R, HU L M, ZHAO Q Y. Ozone micro-nano bubble technology in in situ groundwater remediation[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(Suppl 2): 2006-2011. [11] KERFOOT W B. Microbubble ozone sparging for chlorinated ethene spill remediation[C]//Innovative strategies for subsurface cleanup. Washington DC, 2003: 86-108. [12] BOURGIN M, BOROWSKA E, HELBING J, et al. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water[J]. Water Research,2017,122:234-245. doi: 10.1016/j.watres.2017.05.018 [13] ORMAD P, CORTES S, PUIG A, et al. Degradation of organochloride compounds by O3 and O3/H2O2[J]. Water Research,1997,31(9):2387-2391. doi: 10.1016/S0043-1354(97)00066-3 [14] 林国峰, 孙军益, 熊正龙, 等. 臭氧联合过氧化氢(O3/H2O2)降解水中甲基托布津[J]. 净水技术, 2017, 36(增刊2): 103-108.LIN G F, SUN J Y, XIONG Z L, et al. Degradation of thiophanate-methyl in water by O3/H2O2[J]. Water Purification Technology, 2017, 36(Suppl 2): 103-108. [15] MIZUNO T, HAN F, XU J, et al. Performance evaluation of ozonation and an ozone/hydrogen peroxide process toward development of a new sewage treatment process: focusing on organic compounds and emerging contaminants[J]. Ozone:Science & Engineering,2018,40(5):339-355. [16] HÜBNER U, ZUCKER I, JEKEL M. Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents[J]. Journal of Water Reuse and Desalination,2015,5(1):8-16. doi: 10.2166/wrd.2014.036 [17] 孟宁, 孙贤波, 唐林.O3/H2O2氧化法处理油田采油废水的试验研究[J]. 工业水处理,2019,39(8):86-89. doi: 10.11894/iwt.2018-0612MENG N, SUN X B, TANG L. Study on experiment of oil-extraction wastewater treatment by O3/H2O2 oxidation process[J]. Industrial Water Treatment,2019,39(8):86-89. doi: 10.11894/iwt.2018-0612 [18] LIANG S, YATES R S, DAVIS D V, et al. Treatability of MTBE-contaminated groundwater by ozone and peroxone[J]. Journal:American Water Works Association,2001,93(6):110-120. doi: 10.1002/j.1551-8833.2001.tb09230.x [19] YU J W, WANG Y J, WANG Q, et al. Implications of bromate depression from H2O2 addition during ozonation of different bromide-bearing source waters[J]. Chemosphere,2020,252:126596. doi: 10.1016/j.chemosphere.2020.126596 [20] ANDALURI G, SURI R. Removal of 1, 4-dioxane and volatile organic compounds from groundwater using ozone-based advanced oxidation process[J]. Ozone:Science & Engineering,2017,39(6):423-434. [21] 张静, 杜亚威, 茹星瑶, 等.pH对微气泡臭氧氧化处理染料废水影响[J]. 环境工程学报,2016,10(2):742-748. doi: 10.12030/j.cjee.20160236ZHANG J, DU Y W, RU X Y, et al. Effect of pH on microbubble ozonation treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering,2016,10(2):742-748. doi: 10.12030/j.cjee.20160236 [22] 姚立忱, 王艺林, 刘伟, 等.臭氧催化氧化技术深度处理煤气废水的实验研究[J]. 工业水处理,2013,33(5):50-52. doi: 10.3969/j.issn.1005-829X.2013.05.014YAO L C, WANG Y L, LIU W, et al. Experimental research on the advanced treatment of coal gasification wastewater by catalytic ozonation technology[J]. Industrial Water Treatment,2013,33(5):50-52. doi: 10.3969/j.issn.1005-829X.2013.05.014 [23] WANG T, ZHANG J, SONG Y Q, et al. Role of micro-size zero valence iron as particle electrodes in a three-dimensional heterogeneous electro-ozonation process for nitrobenzene degradation[J]. Chemosphere,2021,276:130264. doi: 10.1016/j.chemosphere.2021.130264 [24] KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental,2003,46(4):639-669. doi: 10.1016/S0926-3373(03)00326-6 [25] 董文博, 王淑惠, 姚思德, 等.水相中·OH, ·H和eaq-与2-氯酚反应机理研究[J]. 高等学校化学学报,2002,23(10):1896-1900. doi: 10.3321/j.issn:0251-0790.2002.10.013DONG W B, WANG S H, YAO S D, et al. Mechanism studies on reactions of ·OH, ·H and eaq- with 2-chlorophenol in aqueous solutions[J]. Chemical Research in Chinese Universities,2002,23(10):1896-1900. doi: 10.3321/j.issn:0251-0790.2002.10.013 [26] 杨波, 张永丽, 郭洪光, 等.磁性卤氧化铋耦合过硫酸盐催化光降解AO7[J]. 黑龙江大学自然科学学报,2017,34(2):196-201.YANG B, ZHANG Y L, GUO H G, et al. Persulfate-assisted photocatalytic degradation of AO7 by magnetic bismuth oxyhalide compounds[J]. Journal of Natural Science of Heilongjiang University,2017,34(2):196-201. [27] GUO Y, ZHAO E Z, WANG J, et al. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes[J]. Journal of Hazardous Materials,2020,389:121829. doi: 10.1016/j.jhazmat.2019.121829 [28] SOLTERMANN F, ABEGGLEN C, TSCHUI M, et al. Options and limitations for bromate control during ozonation of wastewater[J]. Water Research,2017,116:76-85. doi: 10.1016/j.watres.2017.02.026 [29] 许可, 贲伟伟, 强志民.羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学,2017,36(2):207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604XU K, BEN W W, QIANG Z M. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry,2017,36(2):207-213. □ doi: 10.7524/j.issn.0254-6108.2017.02.2016051604