Indirect circulating water network optimization of industrial parks based on mathematical planning method
-
摘要:
为解决工业园区水资源消耗高和水污染排放强度大等问题,整体优化园区水资源网络,实现水资源的高效利用是非常必要的。基于数学规划法,以园区企业间水耗、排水量和水质的差异为基础,兼顾经济和环境要素,构建了包括水源、处理单元以及水阱的水网络优化模型,形成适用于工业园区水资源间接循环利用的优化方法。以典型工业园区为研究对象,基于水网络优化模型,在园区最小新鲜水需求量目标下,比较了不同情景的新鲜水需求量、废水排放量和总费用。结果表明:采用间接循环水网络优化方案可使园区总新鲜水需求量减少24.7%,废水排放量减少40.5%,废水重复利用率提升40.5%,总费用比较适中,为486.09万元/a,具有较高的环境效益,该优化模型能够显著提升工业园区水资源利用效率。
Abstract:In order to solve the problems of high water consumption and high intensity of water pollution discharge in industrial parks, it is necessary to optimize the water resources network of the parks as a whole to realize the efficient use of water resources. Based on the mathematical planning method, considering the differences in water consumption, discharge volume and water quality among the enterprises in the parks and taking into account the economic and environmental factors, a water network optimization mathematical model including water source, treatment unit and water trap was constructed to form an indirect recycling optimization method of water resources applicable to industrial parks. Based on the water network optimization model, the freshwater demand, wastewater discharge and total cost under different scenarios with the objective of minimum freshwater demand in a typical industrial park were compared. The research results showed that the adoption of the indirect recycling water network optimization scheme could reduce the total freshwater demand by 24.7%, reduce wastewater discharge by 40.5%, and increase wastewater reuse rate by 40.5%, and the total cost was moderate at 4.860 9 million yuan/a, which had high environmental benefits. The optimization model could significantly improve the efficiency of water resource utilization in industrial parks.
-
Key words:
- mathematical programming method /
- industrial park /
- indirect circulation /
- water network /
- optimization
-
表 1 优化前园区给排水现状和水资源利用情况
Table 1. Current situation of water supply and drainage and water utilization in the park before optimization
m3/d 优化前 食品饮料 制药 电子信息 金属材料 能源化工 机械装备 园区总量 新鲜水耗 3 900 750 1 700 400 1 550 2 050 10 350 废水排放量 1 950 600 1 370 240 930 1230 6 320 表 2 各处理单元COD去除率及运行成本
Table 2. Treatment unit and cost of COD removal rate
编号 进口COD
限值/(mg/L)出口COD/
(mg/L)COD
去除率/%运行成本/
(元/t)w1(混凝沉淀) 200 50 75 0.5 w2(好氧) 500 60 88 1.0 w3(好氧+厌氧) 1 000 100 90 1.5 表 3 园区水源数据
Table 3. Water source data in the park
行业 排水类型 水源 COD/(mg/L) 流量/(m3/d) 食品饮料 制糖 1 440 400 乳业 2 750 650 肉类加工 3 890 900 制药 混合制剂 4 350 250 化学制剂 5 660 200 中药 6 900 150 电子信息 集成电路 7 125 400 半导体 8 140 470 电子器件 9 215 500 表 4 园区水阱数据
Table 4. Water trap data in the park
行业 需水类型 水阱 COD/(mg/L) 流量/(m3/d) 金属材料 冷却循环水 1 50 160 冲渣水 2 100 90 工业用水 3 60 150 能源化工 冷却循环水 4 50 600 冲渣水 5 100 450 工业用水 6 60 500 机械装备 冷却循环水 7 50 1 000 冲洗水 8 80 450 工业用水 9 60 600 表 5 各行业与分质单元之间的距离
Table 5. Distance between industries and quality units
m 食品饮料 制药 电子信息 金属材料 能源化工 机械装备 1240 1360 1310 1560 1470 1520 表 6 不同情景下园区废水排放量
Table 6. Wastewater discharge in the park under different scenarios
情景 未达到处理单元
要求的流量/(m3/d)未被水阱利用
外排流量/(m3/d)废水排放量/
(m3/d)园区废水总排放量/
(m3/d)园区废水重复
利用率/%w1外排 w2外排 w3外排 0 6 320 0 1 0 0 0 1 360 1 360 3 760 40.5 2 2 750 0 2 750 5 150 13.8 3 1 900 480 2 380 4 780 32.0 4 0 3 380 3 380 5 780 8.5 5 1 900 0 0 1 900 4 300 32.0 6 0 0 2 510 2 510 4 910 22.3 7 0 0 1680 1 680 4 080 35.4 -
[1] 程翠云, 阎伍玖.安徽区域水资源可持续利用评价[J]. 环境科学研究,2006,19(5):154-158. doi: 10.3321/j.issn:1001-6929.2006.05.029CHENG C Y, YAN W J. Evaluating of regional sustainable utilization of water resources in Anhui Provice[J]. Research of Environmental Sciences,2006,19(5):154-158. doi: 10.3321/j.issn:1001-6929.2006.05.029 [2] 傅泽强, 杨明, 段宁, 等.生态工业技术的概念、特征及比较研究[J]. 环境科学研究,2006,19(4):154-158. doi: 10.3321/j.issn:1001-6929.2006.04.030FU Z Q, YANG M, DUAN N, et al. Conception, characters and comparative study of eco-industrial technology[J]. Research of Environmental Sciences,2006,19(4):154-158. doi: 10.3321/j.issn:1001-6929.2006.04.030 [3] 段宁.清洁生产、生态工业和循环经济[J]. 环境科学研究,2001,14(6):1-4. doi: 10.3321/j.issn:1001-6929.2001.06.001DUAN N. Cleaner production, eco-industry and circular economy[J]. Research of Environmental Sciences,2001,14(6):1-4. doi: 10.3321/j.issn:1001-6929.2001.06.001 [4] 解蕾, 姚扬, 但智钢, 等.基于物质流和能量流分析的典型工业园区循环经济发展评价[J]. 环境工程技术学报,2021,11(3):609-616. doi: 10.12153/j.issn.1674-991X.20200209XIE L, YAO Y, DAN Z G, et al. Evaluation of circular economy development in typical industrial parks based on material flow and energy flow analysis[J]. Journal of Environmental Engineering Technology,2021,11(3):609-616. doi: 10.12153/j.issn.1674-991X.20200209 [5] 乔琦.综合类生态工业园区建设绩效评估[J]. 环境工程技术学报,2011,1(1):82-86. doi: 10.3969/j.issn.1674-991X.2011.01.014QIAO Q. Performance assessment of sector-integrate eco-industrial parks[J]. Journal of Environmental Engineering Technology,2011,1(1):82-86. doi: 10.3969/j.issn.1674-991X.2011.01.014 [6] SUVIO P, van HOORN A, SZABO M, et al. Water management for sustainable steel industry[J]. Ironmaking & Steelmaking,2012,39(4):263-269. [7] LU Y, WANG J, ZHU L M. Place-based policies, creation, and agglomeration economies: evidence from China's economic zone program[J]. American Economic Journal:Economic Policy,2019,11(3):325-360. doi: 10.1257/pol.20160272 [8] 张天华, 邓宇铭.开发区、资源配置与宏观经济效率: 基于中国工业企业的实证研究[J]. 经济学(季刊),2020,19(4):1237-1266.ZHANG T H, DENG Y M. Development zone, resource allocation and macroeconomic efficiency: empirical research based on Chinese industrial enterprises[J]. China Economic Quarterly,2020,19(4):1237-1266. [9] 武建国, 程继军.钢铁企业水系统优化探讨[J]. 冶金设备,2018(1):76-80. doi: 10.3969/j.issn.1001-1269.2018.01.18WU J G, CHENG J J. Discussion on the optimization of water system in iron and steel entenprises[J]. Metallurgical Equipment,2018(1):76-80. doi: 10.3969/j.issn.1001-1269.2018.01.18 [10] 曹宏斌. 钢铁水污染全过程控制技术与应用[C]//中国金属学会. 第十二届中国钢铁年会论文集. 北京: 冶金工业出版社, 2019: 165. [11] 杨友麒, 贾小平, 石磊.水网络与虚拟水的过程系统工程研究进展[J]. 化工学报,2015,66(1):32-51. doi: 10.11949/j.issn.0438-1157.20140823YANG Y Q, JIA X P, SHI L. Progress of process systems engineering for water network and virtual water studies[J]. CIESC Journal,2015,66(1):32-51. doi: 10.11949/j.issn.0438-1157.20140823 [12] FOO D C Y. Flowrate targeting for threshold problems and plant-wide integration for water network synthesis[J]. Journal of Environmental Management,2008,88(2):253-274. doi: 10.1016/j.jenvman.2007.02.007 [13] LIAO Z W, WU J T, JIANG B B, et al. Design methodology for flexible multiple plant water networks[J]. Industrial & Engineering Chemistry Research,2007,46(14):4954-4963. [14] CHEW I M L, TAN R, NG D K S, et al. Synthesis of direct and indirect interplant water network[J]. Industrial & Engineering Chemistry Research,2008,47(23):9485-9496. [15] LOVELADY E, EL-HALWAGI M, CHEW I, et al. A property-integration approach to the design and integration of eco-industrial parks[M]. Boca Raton: CRC Press, 2009: 559-567. [16] 梁卓, 李英, 刘名扬, 等.融合水夹点分析的具有中间水道用水网络设计[J]. 西安交通大学学报,2017,51(4):149-154.LIANG Z, LI Y, LIU M Y, et al. Design of water-using network with single internal water main based on water pinch analysis[J]. Journal of Xi'an Jiaotong University,2017,51(4):149-154. [17] JIANG W, ZHANG Z, DENG C, et al. Industrial park water system optimization with joint use of water utility sub-system[J]. Resources, Conservation and Recycling,2019,147:119-127. doi: 10.1016/j.resconrec.2019.04.005 [18] 耿婧婷. 基于水网络优化模型的低碳工业园区水资源循序利用研究[D]. 哈尔滨:哈尔滨工业大学, 2019. [19] 徐剑乔, 袁一星, 吴晨光.给水管道外包式管件设计及修复实验[J]. 中国给水排水,2021,37(17):44-49.XU J Q, YUAN Y X, WU C G. Design of outsourcing pipe fittings and repair test for water supply pipeline[J]. China Water & Wastewater,2021,37(17):44-49. ⊕