Ecological and health risk assessment of soil heavy metals in a mining park: a case study of M Mine in Hunan Province
-
摘要:
矿山公园建设是矿山生态环境修复治理的重要途径,评估土壤修复效果对矿山公园建设运营及游客旅游安全具有重要意义。在湖南M矿山公园非硬化地面采集地表0~30 cm旱土土壤样品66个,测定其中重金属Mn、Cr、Zn、Pb、As、Cu、Ni、Hg的浓度,采用综合污染指数法、潜在生态危害指数法及健康风险评估模型对矿山公园土壤修复后污染状况、潜在生态风险和人类健康风险三方面进行评价。结果表明:M矿山公园土壤中各金属浓度平均值从高到低依次为Mn>Cr>Zn>Pb>As>Cu>Ni>Hg,其中,Cr、Mn、Cu、As和Pb的平均值分别是湖南省土壤背景值的1.23、1.80、1.12、2.05和1.34倍。土壤重金属污染指数为0.51,处于安全级别。各重金属元素单因子潜在风险指数均处于低生态风险级别,重金属综合潜在风险指数均值为81.64,处于低生态风险级别,不存在潜在生态风险。儿童和成人的非致癌风险总值分别为2.46×10−1和7.43×10−2,不会造成非致癌风险;总致癌风险指数为1.38×10−7,不存在致癌风险。经过生态修复后的M矿山公园不存在土壤重金属生态健康风险,适于各类人群开展旅游休闲活动。
Abstract:The construction of mining parks is an important way to restore and manage the ecological environment of mines, and the assessment of the soil remediation effect of mine parks is of great significance to the construction and operation of mining parks and the safety of tourists. 66 soil samples were collected from 0-30 cm of dry soil on unhardened ground in the mining park, and the contents of heavy metals Mn, Cr, Zn, Pb, As, Cu, Ni and Hg were measured. The comprehensive pollution index, potential ecological risk index and health risk assessment model were used to evaluate pollution status, potential ecological risk and human health risk of the remediated soil. The results showed that the average values of each metal element in M Mining Park were Mn > Cr > Zn > Pb > As > Cu > Ni > Hg, where the average values of Cr, Mn, Cu, As and Pb were 1.23, 1.80, 1.12, 2.05 and 1.34 times of the background values of Hunan soil, respectively. The Nemerow comprehensive pollution index was 0.51, which was at a safe level. The single factor potential risk index for each heavy metal element was at the low ecological risk level, and the average potential ecological risk index was 81.64, which was at the low ecological risk level, showing there was no potential ecological risk. The total non-carcinogenic risk value for children and adults was respectively 2.46×10−1 and 7.43×10−2, which did not cause non-carcinogenic risk, and the total carcinogenic risk index was 1.38×10−7, which did not have carcinogenic risk. Overall, after ecological restoration, the mine park would have no ecological risk and health risk of heavy metals in soil, suitable for tourism and recreation for various populations.
-
Key words:
- mining park /
- heavy metal pollution /
- ecological risk evaluation /
- health risk evaluation
-
表 1 污染指数分级标准
Table 1. Pollution index classification standards
P 污染程度 <0.7 安全 0.7~1.0 警戒 1.0~2.0 轻度 2.0~3.0 中度 ≥3.0 重度 表 2 潜在生态风险指数分级标准
Table 2. Potential ecological risk index grading criteria
${E}_{ {\rm{} }{\rm{r}}}^{i}$ 单项生态风险指数分级 RI 综合生态风险指数分级 <40 轻微 <120 低微 40~80 中等 120~240 中等 80~160 强 240~480 严重 160~320 很强 ≥480 极重 ≥320 极强 表 3 重金属健康风险评价参数设置
Table 3. Health risk assessment parameters of heavy metals
参数 物理意义 单位 成人
取值儿童
取值数据来源 ABS 皮肤接触吸收
效率因子无量纲 0.001 0.001 文献[31,38-39] ATC 致癌效应平均
暴露时间d 28 105 28 105 文献[31,38-39] ATN 非致癌效应平均
暴露时间d 8 760 2 190 文献[31,38-39] BW 人均体重 kg 62.5 32.2 文献[28] CF 转换系数 无量纲 10−6 10−6 文献[31,38-39] ED 人均暴露年限 a 24 6 文献[31,38-39] EF 年均暴露频率 d/a 180 180 文献[36] IRh 呼吸速率 m3/d 14.5 7.5 文献[37] IRt 经口摄入重
金属速率mg/d 50 90 文献[30] PEF 颗粒物排放因子 mg3/kg 1.36×109 1.36×109 文献[31,38-39] SA 人均暴露皮肤面积 cm2 2145 1150 文献[36] SL 皮肤附着度 mg/(cm2·d) 0.07 0.2 文献[28,33-34] 表 4 RfD和SF参考值
Table 4. Reference values of RfD and SF
重金属 RfD/〔mg/(kg·d)〕 SF/(kg·d/mg) 手口摄入 皮肤接触 呼吸吸入 Cr 3.00×10−3 6.00×10−5 2.86×10−5 42 Mn 4.60×10−2 1.84×10−3 1.43×10−5 Ni 2.00×10−2 5.40×10−3 2.06×10−2 0.84 Cu 4.00×10−2 1.20×10−2 4.02×10−2 Zn 3.00×10−1 6.00×10−2 3.00×10−1 As 3.00×10−4 1.23×10−4 3.01×10−4 15.1 Pb 3.50×10−3 5.25×10−4 3.52×10−4 Hg 3.00×10−4 2.10×10−5 8.57×10−5 表 5 表层土壤重金属浓度统计分析
Table 5. Statistical analysis of heavy metals content in surface soil
mg/kg 重金属 浓度 平均值 标准差 变异
系数湖南省
土壤
背景值总量
标准1)土壤污染
风险筛
选值2)Cr 34.229~
165.47587.827 33.373 0.380 71.4 400 Mn 119.762~
5707.273823.977 1078.193 1.309 459 2 000 Ni 8.947~
53.75625.279 8.243 0.326 31.9 150 Cu 12.058~
59.56730.559 10.196 0.334 27.3 300 2 000 Zn 38.033~
368.35276.286 47.287 0.620 94.9 500 As 10.514~
99.67232.230 19.044 0.591 15.7 50 60 Pb 19.579~
195.28639.794 21.934 0.551 29.7 280 400 Hg 0.044~
0.2180.115 0.040 0.348 0.116 4 8 1)为DB43/T 1165—2016《重金属污染场地土壤修复标准》总量标准;2)为GB 36600—2018《土壤环境质量 建设用地污染风险管控标准》土壤污染风险筛选值。 表 6 土壤重金属污染评价结果
Table 6. Evaluation results of soil heavy metals pollution
重金属 不同污染等级采样点占比/% 标准值/
(mg/kg)Pi 等级 安全 警戒 轻污染 中污染 重污染 Cr 100 0 0 0 0 400 0.22 安全 Mn 87.88 1.52 7.58 3.03 0 200 0.41 安全 Ni 100 0 0 0 0 150 0.17 安全 Cu 100 0 0 0 0 300 0.10 安全 Zn 98.48 1.52 0 0 0 500 0.15 安全 As 71.21 16.67 12.12 0 0 50 0.65 安全 Pb 100 0 0 0 0 280 0.14 安全 Hg 100 0 0 0 0 4 0.03 安全 表 7 土壤重金属潜在生态风险指数评价结果
Table 7. Evaluation results of potential ecological risk index of soil heavy metals
重金属 不同生态危害水平采样点占比/% 单因子潜在风险指数 轻微 中等 强 很强 极强 最大值 最小值 平均值 Cr 100 0 0 0 0 4.64 0.96 2.46 Mn 100 0 0 0 0 12.43 0.26 1.80 Ni 100 0 0 0 0 8.43 1.40 3.96 Cu 100 0 0 0 0 10.91 2.21 5.60 Zn 100 0 0 0 0 3.88 0.40 0.80 As 92.42 7.58 0 0 0 63.48 6.70 20.53 Pb 100 0 0 0 0 32.88 3.29 6.70 Hg 60.61 39.39 0 0 0 75.17 15.17 39.79 表 8 重金属日均暴露剂量
Table 8. Average daily exposure dose of heavy metals
mg/(kg·d) 重金属 成人非致癌物日均暴露量 儿童非致癌物日均暴露量 致癌物日均暴露量 手口摄入 皮肤接触 呼吸吸入 手口摄入 皮肤接触 呼吸吸入 Cr 3.46×10−5 1.04×10−7 7.39×10−9 1.21×10−4 3.09×10−7 7.42×10−9 2.88×10−9 Mn 3.25×10−4 9.76×10−7 6.93×10−8 1.14×10−3 2.90×10−6 6.96×10−8 Ni 9.97×10−6 2.99×10−8 2.13×10−9 3.48×10−5 8.90×10−8 2.13×10−9 8.29×10−10 Cu 1.21×10−5 3.62×10−8 2.57×10−9 4.21×10−5 1.08×10−7 2.58×10−9 Zn 3.01×10−5 9.04×10−8 6.42×10−9 1.05×10−4 2.69×10−7 6.44×10−9 As 1.27×10−5 3.82×10−8 2.71×10−9 4.44×10−5 1.14×10−7 2.72×10−9 1.06×10−9 Pb 1.57×10−5 4.71×10−8 3.35×10−9 5.49×10−5 1.40×10−7 3.36×10−9 Hg 4.54×10−8 1.36×10−10 9.67×10−12 1.59×10−7 4.05×10−10 9.71×10−12 表 9 重金属非致癌风险指数和致癌风险指数
Table 9. Non-carcinogenic and carcinogenic risk indices for heavy metals
金属元素 成人非致癌风险商 儿童非致癌风险商 非致癌风险指数 致癌风险指数 手口摄入 皮肤接触 呼吸吸入 手口摄入 皮肤接触 呼吸吸入 成人 儿童 Cr 1.16×10−2 1.73×10−3 2.58×10−4 4.04×10−2 5.16×10−3 2.60×10−4 1.35×10−2 4.58×10−2 1.21×10−7 Mn 7.07×10−3 5.31×10−4 4.85×10−3 2.47×10−2 1.58×10−3 4.87×10−3 1.24×10−2 3.11×10−2 Ni 4.99×10−4 5.55×10−6 1.03×10−7 1.74×10−3 1.65×10−5 1.04×10−7 5.04×10−4 1.76×10−3 6.96×10−10 Cu 3.01×10−4 3.02×10−6 6.40×10−8 1.05×10−3 8.97×10−6 6.42×10−8 3.04×10−4 1.06×10−3 Zn 1.00×10−4 1.51×10−6 2.14×10−8 3.51×10−4 4.48×10−6 2.15×10−8 1.02×10−4 3.55×10−4 As 4.24×10−2 3.10×10−4 9.01×10−6 1.48×10−1 9.23×10−5 9.04×10−6 4.27×10−2 1.49×10−1 1.60×10−8 Pb 4.49×10−3 8.98×10−5 9.51×10−6 1.57×10−2 2.67×10−4 9.55×10−6 4.59×10−3 1.59×10−2 Hg 1.51×10−4 6.49×10−6 1.13×10−7 5.28×10−4 1.93×10−5 1.13×10−7 1.58×10−4 5.48×10−4 综合风险指数 7.43×10−2 2.46×10−1 1.38×10−7 -
[1] 庄小静. 矿业废弃地再利用为绿色空间综合效益评价: 以福建紫金山国家矿山公园为例[D]. 福州: 福建师范大学, 2017. [2] 侯万荣.略论矿业遗迹的开发和矿山公园的建设[J]. 中国国土资源经济,2005,18(10):37-38. doi: 10.3969/j.issn.1672-6995.2005.10.014HOU W R. Discussion on the development of mining remains and mine park[J]. Natural Resource Economics of China,2005,18(10):37-38. doi: 10.3969/j.issn.1672-6995.2005.10.014 [3] 王莹, 刘雪美.资源型城市工业遗产旅游开发初探: 以海州露天矿国家矿山公园为例[J]. 城市发展研究,2010,17(11):90-94. doi: 10.3969/j.issn.1006-3862.2010.11.015WANG Y, LIU X M. The primary study of exploitation of industrial heritage tourism in resource-based city: a case study of Haizhou strip national mine park[J]. Urban Studies,2010,17(11):90-94. doi: 10.3969/j.issn.1006-3862.2010.11.015 [4] 陈怀满, 郑春荣, 涂从, 等.中国土壤重金属污染现状与防治对策[J]. 人类环境杂志,1999,28(2):130-134. [5] 崔龙鹏, 白建峰, 史永红, 等.采矿活动对煤矿区土壤中重金属污染研究[J]. 土壤学报,2004,41(6):896-904. doi: 10.3321/j.issn:0564-3929.2004.06.009CUI L P, BAI J F, SHI Y H, et al. Heavy metals in soil contaminated by coal mining activity[J]. Acta Pedologica Sinica,2004,41(6):896-904. doi: 10.3321/j.issn:0564-3929.2004.06.009 [6] LIZ Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment,2014,468/469:843-853. doi: 10.1016/j.scitotenv.2013.08.090 [7] FASHOLA M O, NGOLE-JEME V M, BABALOLA O O. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance[J]. International Journal of Environmental Research and Public Health,2016,13(11):1047. doi: 10.3390/ijerph13111047 [8] FEI X F, CHRISTAKOS G, XIAO R, et al. Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information[J]. Science of the Total Environment,2019,661:168-177. doi: 10.1016/j.scitotenv.2019.01.149 [9] LIANG J, FENG C T, ZENG G M, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution,2017,225:681-690. doi: 10.1016/j.envpol.2017.03.057 [10] HU W Y, WANG H F, DONG L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach[J]. Environmental Pollution,2018,237:650-661. doi: 10.1016/j.envpol.2018.02.070 [11] 刘昭玥, 费杨, 师华定, 等.基于UNMIX模型和莫兰指数的湖南省汝城县土壤重金属源解析[J]. 环境科学研究,2021,34(10):2446-2458. doi: 10.13198/j.issn.1001-6929.2021.05.25LIU Z Y, FEI Y, SHI H D, et al. Source apportionment of soil heavy metals in rucheng county of Hunan Province based on UNMIX model combined with Moran index[J]. Research of Environmental Sciences,2021,34(10):2446-2458. doi: 10.13198/j.issn.1001-6929.2021.05.25 [12] CHAKRABORTY B, BERA B, ROY S, et al. Assessment of non-carcinogenic health risk of heavy metal pollution evidences from coal mining region of eastern India[J]. Environmental Science and Pollution Research,2021,28(34):47275-47293. doi: 10.1007/s11356-021-14012-3 [13] FEITOSA M M, ALVARENGA I F S, JARA M S, et al. Environmental and human-health risks of As in soils with abnormal arsenic levels located in irrigated agricultural areas of Paracatu (MG), Brazil[J]. Ecotoxicology and Environmental Safety,2021,226:112869. doi: 10.1016/j.ecoenv.2021.112869 [14] XIAO R, WANG S, LI R H, et al. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China[J]. Ecotoxicology and Environmental Safety,2017,141:17-24. doi: 10.1016/j.ecoenv.2017.03.002 [15] ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials,2020,400:123289. doi: 10.1016/j.jhazmat.2020.123289 [16] 张迪, 周明忠, 熊康宁, 等.贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J]. 环境科学研究,2021,34(5):1247-1257. doi: 10.13198/j.issn.1001-6929.2021.01.10ZHANG D, ZHOU M Z, XIONG K N, et al. Assessment of pollution and human health risk from heavy metals in soils and crops in the lower Cambrian black shale area, Zunyi, Guizhou Province[J]. Research of Environmental Sciences,2021,34(5):1247-1257. doi: 10.13198/j.issn.1001-6929.2021.01.10 [17] WANG Y Y, ZHENG K X, ZHAN W H, et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar[J]. Ecotoxicology and Environmental Safety,2021,207:111294. doi: 10.1016/j.ecoenv.2020.111294 [18] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration,2017,182:247-268. doi: 10.1016/j.gexplo.2016.11.021 [19] TANG J Y, ZHANG L H, ZHANG J C, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment,2020,701:134751. doi: 10.1016/j.scitotenv.2019.134751 [20] 韩雷, 陈娟, 杜平, 等.不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06HAN L, CHEN J, DU P, et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Sciences,2018,31(7):1289-1295. doi: 10.13198/j.issn.1001-6929.2018.03.06 [21] 俞美香, 尹卫萍, 常卫民.建设项目环境影响回顾性评价探讨[J]. 环境监测管理与技术,2009,21(3):7-8. doi: 10.3969/j.issn.1006-2009.2009.03.003 [22] 黄小娟, 江长胜, 郝庆菊.重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报,2014,34(15):4201-4211.HUANG X J, JIANG C S, HAO Q J. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing[J]. Acta Ecologica Sinica,2014,34(15):4201-4211. [23] 高陈玺, 李川, 彭娟, 等.湘南锰矿废弃地重金属污染土壤的研究及评价[J]. 重庆工商大学学报(自然科学版),2013,30(8):78-83.GAO C X, LI C, PENG J, et al. Research and assessment on heavy metal pollution in the soil of abandoned Mn mines in southern Hunan[J]. Journal of Chongqing Technology and Business University (Natural Science Edition),2013,30(8):78-83. [24] 李军, 刘云国, 彭晖冰.锰矿废弃地重金属污染土壤的评价及修复措施探讨[J]. 环境保护科学,2009,35(2):63-65. doi: 10.3969/j.issn.1004-6216.2009.02.020LI J, LIU Y G, PENG H B. Assessment on heavy metal pollution in soil of abandoned Mn mines and its remediated measures discussion[J]. Environmental Protection Science,2009,35(2):63-65. doi: 10.3969/j.issn.1004-6216.2009.02.020 [25] 李艺, 李明顺, 赖燕平, 等.广西思荣锰矿复垦区的重金属污染影响与生态恢复探讨[J]. 农业环境科学学报,2008,27(6):2172-2177. doi: 10.3321/j.issn:1672-2043.2008.06.008LI Y, LI M S, LAI Y P, et al. Impact of heavy metal contamination in the reclaimed Mn mineland in Si-Rong, Guangxi and suggestions for ecological restoration[J]. Journal of Agro-Environment Science,2008,27(6):2172-2177. doi: 10.3321/j.issn:1672-2043.2008.06.008 [26] 谢荣秀, 田大伦, 方晰.湘潭锰矿废弃地土壤重金属污染及其评价[J]. 中南林学院学报,2005,25(2):38-41.XIE R X, TIAN D L, FANG X. Assessment of pollution of heavy metals on the slag wasteland of Xiangtan manganese mine[J]. Journal of Central South Forestry University,2005,25(2):38-41. [27] 何绪文, 王宇翔, 房增强, 等.铅锌矿区土壤重金属污染特征及污染风险评价[J]. 环境工程技术学报,2016,6(5):476-483. doi: 10.3969/j.issn.1674-991X.2016.05.070HE X W, WANG Y X, FANG Z Q, et al. Pollution characteristics and pollution risk evaluation of heavy metals in soil of lead-zinc mining area[J]. Journal of Environmental Engineering Technology,2016,6(5):476-483. doi: 10.3969/j.issn.1674-991X.2016.05.070 [28] 何瑞东, 张轶舜, 陈永阳, 等.郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估[J]. 环境科学,2019,40(11):4774-4782.HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou City[J]. Environmental Science,2019,40(11):4774-4782. [29] 徐静, 李杏茹, 张兰, 等.北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价[J]. 环境科学,2019,40(6):2501-2509.XU J, LI X R, ZHANG L, et al. Concentration and ecological risk assessment of heavy metals in PM2.5 collected in urban and suburban areas of Beijing[J]. Environmental Science,2019,40(6):2501-2509. [30] 刘贤荣, 郑权, 胡恭任, 等.南昌市道路尘PM2.5中重金属分布特征及健康风险评价[J]. 环境化学,2019,38(7):1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505LIU X R, ZHENG Q, HU G R, et al. Characteristics and health risk assessment of heavy metals in PM2.5 fraction of road dust in Nanchang City[J]. Environmental Chemistry,2019,38(7):1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505 [31] US EPA. Exposure factors handbook[M]. Washington DC: US EPA, 2011. [32] 程睿.铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095 [33] ADIMALLA N, CHEN J, QIAN H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India[J]. Ecotoxicology and Environmental Safety,2020,194:110406. doi: 10.1016/j.ecoenv.2020.110406 [34] GÓMEZ B, PALACIOS M A, GÓMEZ M, et al. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European Cities[J]. Science of the Total Environment,2002,299(1/2/3):1-19. [35] 赵珀, 卢新卫, 黄丽, 等.西安市公园灰尘重金属污染及其健康风险评价[J]. 城市环境与城市生态,2015,28(6):5-9.ZHAO P, LU X W, HUANG L, et al. Pollution level and health risk of heavy metals in dust from city parks of Xi’an[J]. Urban Environment & Urban Ecology,2015,28(6):5-9. [36] 郭金停, 周俊, 胡蓓蓓, 等.天津城市公园灰尘重金属污染健康风险评价[J]. 生态学杂志,2014,33(2):415-420. doi: 10.13292/j.1000-4890.2014.0023GUO J T, ZHOU J, HU B B, et al. Health risk assessment on heavy metals in dust of urban parks in Tianjin[J]. Chinese Journal of Ecology,2014,33(2):415-420. doi: 10.13292/j.1000-4890.2014.0023 [37] 谷阳光, 高富代.我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学,2017,36(1):62-71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705GU Y G, GAO F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China[J]. Environmental Chemistry,2017,36(1):62-71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705 [38] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. [39] 环境保护部. 中国人群暴露参数手册(儿童卷: 0~5岁)[M]. 北京: 中国环境出版社, 2016. [40] 闫文德, 向建林, 田大伦.湖南湘潭矿业废弃地土壤特性研究[J]. 林业科学,2006,42(4):12-18. doi: 10.3321/j.issn:1001-7488.2006.04.003YAN W D, XIANG J L, TIAN D L. Study on characteristics of soil in mining abandoned lands in Xiangtan, Hunan Province[J]. Scientia Silvae Sinicae,2006,42(4):12-18. doi: 10.3321/j.issn:1001-7488.2006.04.003 [41] 方晰, 田大伦, 谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J]. 生态学报,2006,26(5):1494-1501. doi: 10.3321/j.issn:1000-0933.2006.05.026FANG X, TIAN D L, XIE R X. Soil physical and chemical properties of the wasteland in Xiangtan Manganese Mine[J]. Acta Ecologica Sinica,2006,26(5):1494-1501. doi: 10.3321/j.issn:1000-0933.2006.05.026 [42] 纪冬丽, 孟凡生, 薛浩, 等.国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报,2016,6(1):90-99. doi: 10.3969/j.issn.1674-991X.2016.01.014JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology,2016,6(1):90-99. doi: 10.3969/j.issn.1674-991X.2016.01.014 [43] 范刘丹, 王明仕, 宋党育, 等.部分中国城市公园重金属生态风险及健康风险评价[J]. 环境化学,2019,38(4):793-804. doi: 10.7524/j.issn.0254-6108.2018061701FAN L D, WANG M S, SONG D Y, et al. Ecological risk assessment and health risk assessment of heavy metals in some China urban parks[J]. Environmental Chemistry,2019,38(4):793-804. □ doi: 10.7524/j.issn.0254-6108.2018061701