留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废铅膏熔炼再生烟气处理设施事故下大气污染的不确定性分析

邱盼盼 徐亚 能昌信 刘玉强 董路 林汀 张鲁玉

邱盼盼,徐亚,能昌信,等.废铅膏熔炼再生烟气处理设施事故下大气污染的不确定性分析[J].环境工程技术学报,2023,13(2):517-526 doi: 10.12153/j.issn.1674-991X.20220253
引用本文: 邱盼盼,徐亚,能昌信,等.废铅膏熔炼再生烟气处理设施事故下大气污染的不确定性分析[J].环境工程技术学报,2023,13(2):517-526 doi: 10.12153/j.issn.1674-991X.20220253
QIU P P,XU Y,NAI C X,et al.Uncertainty analysis of air pollution under accidents of flue-gas treatment facilities for waste lead paste smelting regeneration[J].Journal of Environmental Engineering Technology,2023,13(2):517-526 doi: 10.12153/j.issn.1674-991X.20220253
Citation: QIU P P,XU Y,NAI C X,et al.Uncertainty analysis of air pollution under accidents of flue-gas treatment facilities for waste lead paste smelting regeneration[J].Journal of Environmental Engineering Technology,2023,13(2):517-526 doi: 10.12153/j.issn.1674-991X.20220253

废铅膏熔炼再生烟气处理设施事故下大气污染的不确定性分析

doi: 10.12153/j.issn.1674-991X.20220253
基金项目: 国家重点研发计划项目(2020YFC1806304,2018YFC1800902);国家自然科学基金项目(51708529)
详细信息
    作者简介:

    邱盼盼(1995—),女,硕士,主要研究方向为环境风险智能监测与预警,qpp17658093323@163.com

    通讯作者:

    徐亚(1985—),男,副研究员,博士,主要从事固体废物处置技术、污染探测及风险评价研究,xuya@craes.org.cn

    能昌信(1965—),男,教授,博士,主要从事环境监测技术研究,naicx@126.com

  • 中图分类号: X523

Uncertainty analysis of air pollution under accidents of flue-gas treatment facilities for waste lead paste smelting regeneration

  • 摘要:

    熔炼再生是重金属危险废物资源化利用最广泛的方式之一。熔炼设施废气处理单元失效条件下废气排放具有源强大、短期排放扩散参数偶然性强等特点,其环境后果呈现强随机性,对事故应急过程的精准监测和科学决策形成极大挑战。对此,提出高斯烟羽模型与随机响应面法耦合(GAUSS-SRSM)的风险评估方法,定量评估复杂源强、扩散参数及其不确定性条件下污染物的随机分布及概率特性。选择华北某再生铅企业开展案例研究,结果表明:在该区域典型气候条件下,下风向0.8~2.2和0.75~1.5 km处SO2和Pb浓度存在超标可能,最大落地浓度超标概率分别为44%和28%,以95%置信水平表征的暴露浓度分别为0.68、0.005 2 mg/m3,分别超过其GB 3095—2012《环境空气质量标准》二级标准限值1.36倍和1.16倍。季节性的风速和气温等差异导致同一设施不同季节的污染及其概率特征差异较大。以Pb为例,冬季较夏季存在超标可能的最大范围相差0.6 km,超标概率相差24%,暴露浓度相差0.003 9 mg/m3。气候和源强等的不确定性使得大气污染后果存在明显的不确定性,下风向0.5 km处不确定性最大,为3.85;随着距离变大,不确定性变小,3.0 km处仅为1.74。下风向0.8~2.2 km污染严重程度大、可能性高,需要避免在该区域布设污染敏感的设备或装置,且应作为事故后应急监测重点关注的区域;而0.5~1.2 km不确定性大,也需要通过加强监测频率等方式克服随机性误差。

     

  • 图  1  随机响应面法-高斯烟羽耦合模型不确定性分析流程

    Figure  1.  Flow chart of uncertainty analysis for Gaussian Plume Model-Stochastic Response Surface Method coupling

    图  2  SRSM与MC相对误差

    Figure  2.  Relative error between SRSM and MC

    图  3  下风向污染物浓度变化

    Figure  3.  Variation of pollutant concentrations downwind

    图  4  不同置信水平最大落地点浓度占标率

    Figure  4.  Concentration ratio to standard at maximum landing sites in different confidence intervals

    图  5  SO2和Pb暴露浓度超标倍数

    Figure  5.  Over standard multiples of SO2 and Pb exposure concentrations

    图  6  SO2和Pb的浓度月变化

    注:最外圈数字代表月份;污染物浓度单位为mg/m3

    Figure  6.  Monthly changes of SO2 and Pb concentrations

    图  7  下风向距离污染不确定性

    注:最外圈数字为下风向距离,m。

    Figure  7.  Downwind distance pollution uncertainty

    表  1  参数取值范围

    Table  1.   Parameter value ranges

    参数物理意义单位输入值概率分布
    u平均风速m/s2~5均匀分布
    Q1SO2排放速率mg/s25 000~30 000均匀分布
    Q2Pb排放速率mg/s300~470均匀分布
    Vs烟气出口流速m/s5.7~8.7均匀分布
    Ts烟流温度K373~413均匀分布
    Ta环境大气温度K258.4~301.6均匀分布
    Pa大气压力hPa950~990均匀分布
    Qv烟气流量m3/s11.4~17.45均匀分布
      注:输入值根据该项目实测数据确定,其中SO2、Pb取未经处理时废气的排放速率;概率分布类型根据参考文献[28],均服从均匀分布。
    下载: 导出CSV

    表  2  扩散系数取值范围

    Table  2.   Value range of diffusion coefficients

    距离/km水平扩散系数
    σy)/(m2/s)
    垂直扩散系数
    (σz)/(m2/s)
    概率分布
    0.531.4~39.217.3~19.6均匀分布
    0.850.1~56.725.0~29.0均匀分布
    1.061.4~69.330.1~34.1均匀分布
    1.273.5~79.635.2~39.2均匀分布
    1.589.9~96.642.8~50.1均匀分布
    1.8106.5~111.751.0~54.3均匀分布
    2.0118.0~124.055.2~58.3均匀分布
    3.0170.0~176.076.1~82.1均匀分布
    下载: 导出CSV

    表  3  高斯烟羽模型不确定性输出统计指标

    Table  3.   Uncertainty output statistical indexes of Gaussian Plume Model

    统计指标下风向1.0 km下风向2.0 km
    MC/
    万次
    2-SRSM/
    千次
    3-SRSM/
    千次
    MC/
    万次
    2-SRSM/
    千次
    3-SRSM/
    千次
    mean0.577 50.603 50.589 50.493 60.523 00.503 5
    SD0.021 20.023 10.022 00.022 40.024 10.023 2
    CV0.542 80.599 00.572 30.627 90.687 50.653 0
    kurt3.160 12.742 73.356 63.611 93.162 93.821 8
    skew1.791 41.578 51.736 01.011 90.900 71.043 2
      注:2-SRSM指2阶SRSM模拟,3-SRSM指3阶SRSM模拟。全文同。
    下载: 导出CSV

    表  4  某区平均风速、气温的月变化

    Table  4.   Monthly changes of average wind speed and temperature in an area

    月份平均风速/(m/s)平均气温/℃
    12.12.7
    22.25.6
    32.84.9
    43.213.5
    53.421.4
    63.524.0
    73.727.5
    84.028.6
    94.322.2
    104.517.4
    113.17.9
    122.93.2
    下载: 导出CSV
  • [1] ZHANG M M, BUEKENS A, LI X D. Brominated flame retardants and the formation of dioxins and furans in fires and combustion[J]. Journal of Hazardous Materials,2016,304:26-39. doi: 10.1016/j.jhazmat.2015.10.014
    [2] 王菲, 张曼丽, 王雪娇, 等.我国铜、铅和锌冶炼过程中危险废物产生与污染特性[J]. 环境工程技术学报,2021,11(5):1012-1019. doi: 10.12153/j.issn.1674-991X.20210080

    WANG F, ZHANG M L, WANG X J, et al. Generation and pollution characteristics of hazardous wastes from smelting of copper, lead and zinc in China[J]. Journal of Environmental Engineering Technology,2021,11(5):1012-1019. doi: 10.12153/j.issn.1674-991X.20210080
    [3] 郭学益, 田庆华, 刘咏, 等.有色金属资源循环研究应用进展[J]. 中国有色金属学报,2019,29(09):1859-1901. doi: 10.19476/j.ysxb.1004.0609.2019.09.06

    GUO X Y, TIAN Q H, LIU Y, et al. Progress in the application of non-ferrous metal resource recycling research[J]. Chinese Journal of Nonferrous Metals,2019,29(09):1859-1901. doi: 10.19476/j.ysxb.1004.0609.2019.09.06
    [4] 陈彪, 张俊丰, 黄妍, 等.废铅蓄电池资源循环技术与污染物及CO2源头减排[J]. 湘潭大学学报(自然科学版),2021,43(3):1-7.

    CHEN B, ZHANG J F, HUANG Y, et al. Resource recycling technology for waste lead-acid batteries followed pollutants and CO2 reducing at source[J]. Journal of Xiangtan University (Natural Science Edition),2021,43(3):1-7.
    [5] QIAN Z, KALUARACHCHI J J. Risk assessment at hazardous waste-contaminated sites with variability of population characteristics[J]. Environment International,2002,28(1/2):41-53.
    [6] 生态环境部. 固体废物再生利用污染防治技术导则: HJ 1091—2020[S/OL]. [2022-02-26]. https://www.doc88.com/p-11261192613973.html?r=1.
    [7] VILAVERT L, NADAL M, MARI M, et al. Monitoring temporal trends in environmental levels of polychlorinated dibenzo-p-dioxins and dibenzofurans: results from a 10-year surveillance program of a hazardous waste incinerator[J]. Archives of Environmental Contamination and Toxicology,2010,59(4):521-531. doi: 10.1007/s00244-010-9523-4
    [8] 黄道建, 陈晓雯, 蔡凤珊, 等.珠江三角洲垃圾焚烧发电厂烟气污染物的呼吸暴露风险研究[J]. 华南师范大学学报(自然科学版),2020,52(5):41-48.

    HUANG D J, CHEN X W, CAI F S, et al. A study of the inhalation exposure risk of pollutants in flue gas from solid waste incineration power plants in the Pearl River Delta[J]. Journal of South China Normal University (Natural Science Edition),2020,52(5):41-48.
    [9] 张海龙, 李祥平, 齐剑英, 等.生活垃圾焚烧处理设施周边环境重金属污染健康风险评价[J]. 农业环境科学学报,2013,32(8):1670-1676.

    ZHANG H L, LI X P, QI J Y, et al. Primary research on health risk assessment of heavy metals in the surrounding soil and air of a municipal solid waste incinerator (MSWI), South China[J]. Journal of Agro-Environment Science,2013,32(8):1670-1676.
    [10] KOBAYASHI T, NAGAI H, CHINO M, et al. Source term estimation of atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations[J]. Journal of Nuclear Science & Technology,2013,50(3):255-264.
    [11] RIPAMONTI G, LONATI G, BARALDI P, et al. Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant[J]. Reliability Engineering & System Safety,2013,120:98-105.
    [12] SILVA K, ISHIWATARI Y, TAKAHARA S. Cost per severe accident as an index for severe accident consequence assessment and its applications[J]. Reliability Engineering & System Safety,2014,123:110-122.
    [13] 马飞.生活垃圾焚烧发电厂环境风险评价及管理策略研究[J]. 中国资源综合利用,2021,39(2):65-67. doi: 10.3969/j.issn.1008-9500.2021.02.021

    MA F. Research on environmental risk assessment and management strategy of domestic waste incineration power plant[J]. China Resources Comprehensive Utilization,2021,39(2):65-67. doi: 10.3969/j.issn.1008-9500.2021.02.021
    [14] 刘华峰, 于可利, 李金惠, 等.危险废物焚烧设施的环境风险评价[J]. 环境科学研究,2005,18(增刊 1):48-52. doi: 10.3321/j.issn:1001-6929.2005.z1.012

    LIU H F, YU K L, LI J H, et al. Environment risk assessment of hazardous waste incineration[J]. Research of Environmental Sciences,2005,18(Suppl 1):48-52. doi: 10.3321/j.issn:1001-6929.2005.z1.012
    [15] 祁栋, 蔺公敏.富氧侧吹熔池熔炼炉处理废蓄电池铅泥初探[J]. 有色矿冶,2015,31(2):36-38. doi: 10.3969/j.issn.1007-967X.2015.02.011

    QI D, LIN G M. Primary research on processing of waste lead-acid batteries withside-blown oxygen enrichment in molten bath of smelting furnace[J]. Non-Ferrous Mining and Metallurgy,2015,31(2):36-38. doi: 10.3969/j.issn.1007-967X.2015.02.011
    [16] AL-BAGHDADI M A R S, AL-JANABI H A K S. Modeling optimizes PEM fuel cell performance using three-dimensional multi-phase computational fluid dynamics model[J]. Energy Conversion and Management,2007,48(12):3102-3119. doi: 10.1016/j.enconman.2007.05.007
    [17] ANDRONICO D, SCOLLO S, CARUSO S, et al. The 2002–03 Etna explosive activity: Tephra dispersal and features of the deposits[J]. Journal of Geophysical Research Atmospheres,2008,113(B4):B04209.
    [18] YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J]. Applied Optics,2014,53(36):8514-8521. doi: 10.1364/AO.53.008514
    [19] DOMHAGEN F, WAHLGREN P, HAGENTOFT C E. Impact of weather conditions and building design on contaminant infiltration from crawl spaces in Swedish schools: numerical modeling using Monte Carlo method[J]. Building Simulation,2022,15(5):845-858. doi: 10.1007/s12273-021-0832-5
    [20] SOUHAR O, MARCEAU A, LOUBET B. Modelling and inference of maize pollen emission rate with a Lagrangian dispersal model using Monte Carlo method[J]. The Journal of Agricultural Science,2020,158(5):383-395. doi: 10.1017/S0021859620000763
    [21] ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems[J]. Risk Analysis:an Official Publication of the Society for Risk Analysis,2000,20(5):591-602. doi: 10.1111/0272-4332.205054
    [22] SPIJKERBOER H P, BENIERS J E, JASPERS D, et al. Ability of the Gaussian plume model to predict and describe spore dispersal over a potato crop[J]. Ecological Modelling,2002,155(1):1-18. doi: 10.1016/S0304-3800(01)00475-6
    [23] GORDON M, MAKAR P A, STAEBLER R M, et al. A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands[J]. Atmospheric Chemistry and Physics,2018,18(19):14695-14714. doi: 10.5194/acp-18-14695-2018
    [24] 韩冬, 贺仁睦, 马进, 等.基于随机响应面法的动态仿真不确定性分析[J]. 电力系统自动化,2008,32(20):11-14. doi: 10.3321/j.issn:1000-1026.2008.20.003

    HAN D, HE R M, MA J, et al. Quantitative uncertainty analysis for power system dynamic simulation based on stochastic response surface method[J]. Automation of Electric Power Systems,2008,32(20):11-14. doi: 10.3321/j.issn:1000-1026.2008.20.003
    [25] LAI X, MENG Z, WANG S Y, et al. Global parametric sensitivity analysis of equivalent circuit model based on Sobol’ method for lithium-ion batteries in electric vehicles[J]. Journal of Cleaner Production,2021,294:126246. doi: 10.1016/j.jclepro.2021.126246
    [26] ZHOU D, PAN E S, ZHANG Y M. Fractional polynomial function in stochastic response surface method for reliability analysis[J]. Journal of Mechanical Science and Technology,2021,35(1):121-131. doi: 10.1007/s12206-020-1211-3
    [27] LI D Q, CHEN Y F, LU W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics,2011,38(1):58-68. doi: 10.1016/j.compgeo.2010.10.006
    [28] 崔威杰, 曹博, 陈义学.基于贝叶斯MCMC方法的高斯烟羽模型不确定性分析[J]. 核技术,2020,43(4):55-61. doi: 10.11889/j.0253-3219.2020.hjs.43.040009

    CUI W J, CAO B, CHEN Y X. Uncertainty analysis of Gaussian plume model based on Bayesian MCMC method[J]. Nuclear Techniques,2020,43(4):55-61. doi: 10.11889/j.0253-3219.2020.hjs.43.040009
    [29] ZENG L H. Application of MATLAB in the teaching of probability theory and mathematical statistics[J]. Journal of Physics:Conference Series,2020,1651(1):012078. doi: 10.1088/1742-6596/1651/1/012078
    [30] 李玉平.高架污染源的最大地面浓度及位置[J]. 安全与环境学报,2010,10(6):89-91. doi: 10.3969/j.issn.1009-6094.2010.06.021

    LI Y P. Maximum ground concentration and its location formed by an elevated pollution source[J]. Journal of Safety and Environment,2010,10(6):89-91. doi: 10.3969/j.issn.1009-6094.2010.06.021
    [31] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2012.
    [32] 刘晶晶, 杨勇, 陈恺.有机污染场地修复工程中的大气环境二次污染防治及案例分析[J]. 环境工程技术学报,2018,8(4):381-389.

    LIU J J, YANG Y, CHEN K. Secondary air pollution prevention and case study in organic pollutants contaminated site remediation project[J]. Journal of Environmental Engineering Technology,2018,8(4):381-389.
    [33] 能昌信, 邱盼盼, 徐亚, 等.氰渣豁免处置情景下的地下水污染与健康风险[J]. 中国环境科学,2022,42(2):688-696. doi: 10.3969/j.issn.1000-6923.2022.02.022

    NAI C X, QIU P P, XU Y, et al. Groundwater pollution and health risks under exemption of cyanide residue disposal scenarios[J]. China Environmental Science,2022,42(2):688-696. doi: 10.3969/j.issn.1000-6923.2022.02.022
    [34] 林春绵, 张震杰, 陈金海, 等.环境影响评价中卫生防护距离设置的探讨[J]. 环境科学与技术,2008,31(7):129-131. doi: 10.3969/j.issn.1003-6504.2008.07.034

    LIN C M, ZHANG Z J, CHEN J H, et al. Brief discussion on the setup of health protective zone in environmental impact assessment[J]. Environmental Science & Technology,2008,31(7):129-131. doi: 10.3969/j.issn.1003-6504.2008.07.034
    [35] 张秋花.化工企业储罐区大气环境风险评价及风险管理措施研究[J]. 化学工程与装备,2019(10):300-304. doi: 10.19566/j.cnki.cn35-1285/tq.2019.10.121
    [36] 张唯, 熊险平, 刘炳杰, 等.气象条件对华北平原持续性雾霾污染程度的影响研究[J]. 环境科学与管理,2020,45(8):34-38. doi: 10.3969/j.issn.1673-1212.2020.08.008

    ZHANG W, XIONG X P, LIU B J, et al. Study on influence of meteorological conditions on persistent haze pollution in North China Plain[J]. Environmental Science and Management,2020,45(8):34-38. doi: 10.3969/j.issn.1673-1212.2020.08.008
    [37] XU Y, XUE X S, DONG L, et al. Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health[J]. Waste Management,2018,82:156-166. doi: 10.1016/j.wasman.2018.10.009
    [38] 王亘, 张妍, 张超, 等.垃圾填埋场恶臭污染对感官影响的评价研究[J]. 农业工程学报,2019,35(12):232-238. doi: 10.11975/j.issn.1002-6819.2019.12.028

    WANG G, ZHANG Y, ZHANG C, et al. Sense assessment of odor pollution from landfill[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):232-238. □ doi: 10.11975/j.issn.1002-6819.2019.12.028
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  206
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18

目录

    /

    返回文章
    返回