Effect of biotreatment of kitchen waste and excess activated sludge by black soldier fly
-
摘要:
黑水虻生物转化技术可用于餐厨垃圾或剩余污泥的处理,解决其处置和资源化难题。分别考察了餐厨垃圾与剩余污泥在不同混合比例(污泥比例分别为0%、25%、50%、75%、100%)下作为培养底物时的处置转化情况以及黑水虻的生长和重金属富集情况。结果显示:经15 d处理后,不同组别餐厨垃圾和剩余污泥混合物的平均减量率为22.66%~56.16%,平均生物转化率为15.18%~27.84%,且处理后有机废物的恶臭气味消失,处置效果良好。此外,剩余污泥比例低于75%的组别都能保证黑水虻的正常生长,剩余污泥比例为25%和50%组别中,黑水虻的粗蛋白(21.22%、20.50%)和粗脂肪(18.91%、18.50%)含量相较于未添加剩余污泥组(40.75%、37.56%)略低,但其微量元素含量(14.24%、14.59%)相较于未添加剩余污泥组(10.02%)略高,剩余污泥比例为0%和25%的组别中,黑水虻的重金属生物富集系数均在阈值范围内(<1)。未添加剩余污泥培养的黑水虻可用作水生生物饲料,添加剩余污泥培养的黑水虻可作为禽畜饲料添加剂使用,实现固废养殖的黑水虻的资源化利用。
Abstract:Kitchen waste or excess activated sludge could be disposed by the biotransformation technology of black soldier fly larvae (BSFL) to solve the problem of its disposal and resource utilization. The disposal and conversion of kitchen waste and excess activated sludge as culture substrate and the situations of BSFL growth and heavy metal enrichment under different feeding conditions (respectively with 0%, 25%, 50%, 75% and 100% excess activated sludge) were investigated. The results showed that after 15 d treatment process, the average reduction rate was 22.66%-56.16%, and the average biological conversion rate was 15.18%-27.84% in different groups. Furthermore, the treated food waste and excess activated sludge exhibited better characteristics and had no foul odor, indicating that preferable treatment efficiency of these solid wastes could be acquired in the synchronous disposition system by BSFL. Especially, when the mass ratio of excess activated sludge in the fodder reached less than 75%, BSFL could survive. The contents of crude protein (21.22% and 20.5%) and crude fat (18.91% and 18.5%) of BSFL in the 25% and 50% excess activated sludge groups were lower than that in the groups without excess sludge (40.75% and 37.56%), while a higher content of trace elements of the above two groups (14.24% and 14.59%) was observed in BSFL comparing to that of the groups without excess sludge (10.02%). The enrichment coefficients of heavy metals in 0% and 25% excess activated sludge groups were under the threshold value (<1). Based on these results, the BSFL fed with food waste could be served for the feed of aquatic organisms, and the BSFL fed with excess activated sludge could beserved as the feed of aquatic organisms, and the BSFL fed with excess activated sludge could be used as a feed additive for some poultry and livestock, thus enabling the resource utilization of BSFL cultivated with solid wastes.
-
表 1 剩余污泥性质指标
Table 1. Contents of the ingredients in excess activated sludge
理化指标 数值 理化指标 数值 pH 7.2 Zn浓度/(mg/kg) 590 含水率/% 82.3 P浓度/(mg/kg) 295 灰分占比/% 58.75 As浓度/(mg/kg) 6.84 有机质占比/% 23.20 Pb浓度/(mg/kg) 30.46 无机盐占比/% 18.25 Cr浓度/(mg/kg) 26.11 Ca浓度/(mg/kg) 7 531 Hg浓度/(mg/kg) 0.15 Cu浓度/(mg/kg) 145.5 Cd浓度/(mg/kg) 0.79 表 2 餐饮垃圾及厨余垃圾性质指标
Table 2. Contents of the ingredients in food residue and kitchen waste
% 类别 含水率 灰分 脂肪 蛋白质 无机盐 餐饮垃圾 79.3 1.67 24.50 26.10 0.82 厨余垃圾 88.9 1.69 5.80 7.90 5.91 表 3 不同试验组别黑水虻饲料配比
Table 3. Ratios of fodder to black soldier fly larvae in different experimental groups
% 类型 未添加污泥组 25%污泥组 50%污泥组 75%污泥组 100%污泥组 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 餐饮垃圾 0 33.3 50 66.7 100 0 25 50 75 0 25 50 0 25 0 厨余垃圾 100 66.7 50 33.3 0 75 50 25 0 50 25 0 25 0 0 剩余污泥 0 0 0 0 0 25 25 25 25 50 50 50 75 75 100 表 4 测定指标及方法
Table 4. Indexes and methods of test
测定指标 检测方法 虫体中粗蛋白、粗脂肪含量 GB/T 18868—2002 虫体总P含量 GB/T 6437—2018 虫体Ca、Cu、Zn含量 GB/T 13885—2017 虫体粗灰分含量 GB/T 6438—2007 虫体总As含量 GB/T 13079—2006 虫体Pb含量 GB/T 13080—2018 虫体Hg含量 GB/T 13081—2006 虫体Cd含量 GB/T 13082—1991 虫体Cr含量 GB/T 13088—2006 表 5 不同试验组别中黑水虻生长状况
Table 5. Growth status of black soldier fly larvae in different experimental groups
类别 组别 物料干质量/g 黑水虻 干质量/g 湿质量/g 长度/cm 平均长度/cm 平均质量/g 未添加污泥组 T1 244.93±19.72 32.30±0.75 294.12±13.45 1.21±0.09 1.51 514.62 T2 329.51±23.23 39.34±2.64 536.34±21.27 1.33±0.07 T3 334.90±43.17 40.50±9.71 563.28±24.46 1.41±0.05 T4 359.49±64.14 43.38±0.58 572.46±32.74 1.63±0.01 T5 391.86±52.32 45.36±6.65 606.90±41.49 1.96±0.16 25%污泥组 T6 302.63±22.34 35.88±0.91 115.32±35.46 0.72±0.08 0.77 270.72 T7 388.11±13.82 50.82±0.87 293.7±23.48 0.74±0.05 T8 472.83±21.27 51.32±3.74 370.26±4.47 0.69±0.04 T9 473.59±24.12 54.34±1.81 303.6±12.47 0.93±0.13 50%污泥组 T10 459.07±63.17 48.42±5.66 257.76±14.48 0.79±0.11 0.61 284.82 T11 456.80±53.42 50.70±4.53 296.46±22.34 0.52±0.05 T12 442.28±41.12 60.48±5.76 300.24±35.42 0.53±0.03 -
[1] 贾璇, 赵冰, 吴昊天, 等.餐厨垃圾调理剂对果园土壤团聚体组成及分布的影响[J]. 环境科学研究,2020,33(9):2163-2168. doi: 10.13198/j.issn.1001-6929.2020.03.31JIA X, ZHAO B, WU H T, et al. Effects of soil aggregates composition and distribution using food waste soil conditioner in the orchard soil[J]. Research of Environmental Sciences,2020,33(9):2163-2168. doi: 10.13198/j.issn.1001-6929.2020.03.31 [2] 毕少杰, 洪秀杰, 韩晓亮, 等.餐厨垃圾处理现状及资源化利用进展[J]. 中国沼气,2016,34(2):58-61. doi: 10.3969/j.issn.1000-1166.2016.02.011BI S J, HONG X J, HAN X L, et al. Status and development of resource processing technologies of food waste[J]. China Biogas,2016,34(2):58-61. doi: 10.3969/j.issn.1000-1166.2016.02.011 [3] 杨召峰, 苑宏英, 叶际亮, 等.剩余污泥和餐厨垃圾制取生物柴油现状及前景分析[J]. 天津城建大学学报,2021,27(6):431-435. doi: 10.19479/j.2095-719x.2106431 [4] 邓俊.餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300DENG J. Harmless treatment and resource utilization of kitchen waste: development status and trend[J]. Journal of Environmental Engineering Technology,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300 [5] 辛旺, 宋永会, 张亚迪, 等.污泥基碳吸附材料的制备及其吸附性能研究进展[J]. 环境工程技术学报,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044XIN W, SONG Y H, ZHANG Y D, et al. Research progress of preparation of sewage sludge-based carbonaceous adsorbents and their adsorption characteristics[J]. Journal of Environmental Engineering Technology,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044 [6] 王方舟, 刘雪瑜, 肖书虎, 等.污泥磷形态及响应面分析法优化释磷试验[J]. 环境工程技术学报,2021,11(1):151-157. doi: 10.12153/j.issn.1674-991X.20200060WANG F Z, LIU X Y, XIAO S H, et al. Experimental study on phosphorus form of sludge and response surface method to optimize phosphorus release[J]. Journal of Environmental Engineering Technology,2021,11(1):151-157. doi: 10.12153/j.issn.1674-991X.20200060 [7] DIENER S, STUDT SOLANO N M, ROA GUTIÉRREZ F, et al. Biological treatment of municipal organic waste using black soldier fly larvae[J]. Waste and Biomass Valorization,2011,2(4):357-363. doi: 10.1007/s12649-011-9079-1 [8] GOLD M, CASSAR C M, ZURBRÜGG C, et al. Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates[J]. Waste Management,2020,102:319-329. doi: 10.1016/j.wasman.2019.10.036 [9] 尹靖凯, 龚小燕, 孙丽娜, 等.黑水虻对餐厨垃圾养分转化研究[J]. 中国农业科技导报,2021,23(6):154-159. doi: 10.13304/j.nykjdb.2020.0263YIN J K, GONG X Y, SUN L N, et al. Study on the transformation of nutrients in kitchen waste by black soldier fly[J]. Journal of Agricultural Science and Technology,2021,23(6):154-159. doi: 10.13304/j.nykjdb.2020.0263 [10] 魏亚茹. 黑水虻对剩余污泥生态处理技术研究[D]. 泰安: 山东农业大学, 2020. [11] LEE Z K, LI S L, KUO P C, et al. Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste[J]. International Journal of Hydrogen Energy,2010,35(24):13458-13466. doi: 10.1016/j.ijhydene.2009.11.126 [12] ANJUM M, AL-MAKISHAH N H, BARAKAT M A. Wastewater sludge stabilization using pre-treatment methods[J]. Process Safety and Environmental Protection,2016,102:615-632. doi: 10.1016/j.psep.2016.05.022 [13] 胡俊茹, 何飞, 莫文艳, 等.采食不同有机废弃物黑水虻幼虫饲料价值分析[J]. 中国饲料,2017(15):24-27. doi: 10.15906/j.cnki.cn11-2975/s.20171506HU J R, HE F, MO W Y, et al. The feed value of black soldier fly Hermetiaillucen slarva fed with different organic wastes[J]. China Feed,2017(15):24-27. doi: 10.15906/j.cnki.cn11-2975/s.20171506 [14] 李武, 郑龙玉, 李庆, 等.亮斑扁角水虻转化餐厨剩余物工艺及资源化利用[J]. 化学与生物工程,2014,31(11):12-17. doi: 10.3969/j.issn.1672-5425.2014.11.003LI W, ZHENG L Y, LI Q, et al. Conversion process and resource utilization of restaurant waste by black soldier fly[J]. Chemistry & Bioengineering,2014,31(11):12-17. doi: 10.3969/j.issn.1672-5425.2014.11.003 [15] BESKIN K V, HOLCOMB C D, CAMMACK J A, et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions[J]. Waste Management,2018,74:213-220. doi: 10.1016/j.wasman.2018.01.019 [16] CAI M M, MA S T, HU R Q, et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora[J]. Environmental Microbiology,2018,20(11):4051-4062. doi: 10.1111/1462-2920.14450 [17] 王坤, 钱洁, 唐玉朝, 等.酸-低热联合处理对剩余污泥脱水性能的影响[J]. 环境科学研究,2021,34(7):1679-1686. doi: 10.13198/j.issn.1001-6929.2021.03.03WANG K, QIAN J, TANG Y C, et al. Effect of acid-heat combined treatment on residual sludge dewatering at low temperature[J]. Research of Environmental Sciences,2021,34(7):1679-1686. doi: 10.13198/j.issn.1001-6929.2021.03.03 [18] 李鑫. 黑水虻生长条件优化及处理餐厨垃圾的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [19] WEI L L, ZHU F Y, LI Q Y, et al. Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International,2020,144:106093. doi: 10.1016/j.envint.2020.106093 [20] 许明珠, 张琴, 童万平, 等.饲料糖水平对方格星虫稚虫生长、体组成和消化酶活性的影响[J]. 动物营养学报,2013,25(3):534-542. doi: 10.3969/j.issn.1006-267x.2013.03.011XU M Z, ZHANG Q, TONG W P, et al. Effects of dietary carbohydrate level on growth, body composition and digestive enzyme activities of juvenile peanut worm, Sipunculus nudus[J]. Chinese Journal of Animal Nutrition,2013,25(3):534-542. doi: 10.3969/j.issn.1006-267x.2013.03.011 [21] 陈巍. 营养成分对黑水虻肠道微生物的影响及幼虫对仔猪生长性能影响[D]. 广州: 华南农业大学, 2018. [22] VIAU E, BIBBY K, PAEZ-RUBIO T, et al. Toward a consensus view on the infectious risks associated with land application of sewage sludge[J]. Environmental Science & Technology,2011,45(13):5459-5469. [23] 岳颖, 刘国华, 郑爱娟, 等.生长动物脂肪代谢关键酶基因表达调控[J]. 动物营养学报,2012,24(2):232-238. doi: 10.3969/j.issn.1006-267x.2012.02.007YUE Y, LIU G H, ZHENG A J, et al. Modulating the expression of genes regulating key enzymes for lipid metabolism in growing animals[J]. Chinese Journal of Animal Nutrition,2012,24(2):232-238. doi: 10.3969/j.issn.1006-267x.2012.02.007 [24] 李必为.豆渣作为蛋白源在水产饲料中的研究进展[J]. 江西水产科技,2021(6):44-45. doi: 10.3969/j.issn.1006-3188.2021.06.016 [25] 周梅素, 林培华, 郭东龙.食物微量元素与人体微量元素疾病[J]. 食品科技,2001,26(3):64-65. doi: 10.3969/j.issn.1005-9989.2001.03.029 [26] 胡之弈, 林鸿飞, 王帅, 等.藻酸盐降解菌群强化剩余污泥厌氧发酵产酸[J]. 环境工程学报,2022,16(1):245-252. doi: 10.12030/j.cjee.202109102HU Z Y, LIN H F, WANG S, et al. Enhanced acidogenesis of waste activated sludge fermentation by an alginate-degrading consortium[J]. Chinese Journal of Environmental Engineering,2022,16(1):245-252. doi: 10.12030/j.cjee.202109102 [27] 张弛, 刘聪, 张瑞芳, 等.阜平县土壤有效态微量元素的空间变异[J]. 河南农业大学学报,2022,56(1):41-49.ZHANG C, LIU C, ZHANG R F, et al. Spatial variability of soil available microelements in Fuping County[J]. Journal of Henan Agricultural University,2022,56(1):41-49. [28] 李逵. 食料中Cd对黑水虻生物学、肠道pH及脂肪体形态的影响[D]. 武汉: 华中农业大学, 2019. [29] 王小波, 李景龙, 尚东维, 等.Cu2+、Zn2+、Cd2+对黑水虻幼虫生长的影响及在虫体和虫粪的积累[J]. 环境昆虫学报,2019,41(2):387-393.WANG X B, LI J L, SHANG D W, et al. Effect of Cu2+, Zn2+, Cd2+ on the growth of Hermetia illucens larvae and accumulation in larvae and feces[J]. Journal of Environmental Entomology,2019,41(2):387-393. ⊗