Heavy metal pollution characteristics and health risk assessment of soil from an abandoned site for lead smelting of waste lead batteries
-
摘要:
以某典型废铅蓄电池非法炼铅污染场地为研究对象,采用综合污染指数法、潜在生态指数法以及人体健康风险模型分别对场地土壤中铅和砷污染特征以及健康风险进行评价,并结合暴露吸收生物动力学模型(IEUBK)评估场地周边儿童的血铅水平。结果显示:研究区各点位土壤中铅和砷浓度平均值分别为4.67×104和2.64×102 mg/kg,显著高于河南省土壤背景值,分别超过GB 36600—2018《土壤环境质量 建设用地土壤污染风险管控标准(试行)》二类用地风险筛选值的58.37倍和4.41倍;各点位的综合污染指数和潜在生态指数依次为废旧铅蓄电池拆解区>贮存区>铅块成型区,除铅块成型区土壤砷为轻度污染外,其他区域土壤中铅和砷均属于重度污染,存在极强的潜在生态风险;经3种暴露途径对成人和儿童造成的致癌、非致癌威胁依次为经口摄入>皮肤接触>呼吸吸入,各点位砷的致癌风险大小依次为炼铅炉区>废铅蓄电池拆解区>储存区>铅块成型区>10−6;铅和砷对成人和儿童非致癌风险总指数最大分别为25.00和160.69、1.73和11.71,其中铅对儿童的非致癌风险更加明显,二者均高于美国国家环境保护局推荐的最大可接受水平,对附近居民存在极强的潜在健康风险;IEUBK模型计算的儿童血铅浓度超过100 μg/L的概率高达99.99%,均远高于5%的安全概率限值。
Abstract:The contaminated plot left by a typical illegal lead refining site for waste lead batteries was taken as the research object. The pollution characteristics of lead and arsenic and health risk in the site soil were analyzed and evaluated by using the comprehensive pollution index method, the potential ecological index method, and the human health risk assessment model, and the children's blood lead levels were evaluated combined with the integrated exposure uptake biokinetic (IEUBK) model at the same time. The results indicated that the mean values of lead and arsenic in the soil at all sites in the study area were 4.67×104 and 2.64×102 mg/kg, respectively, which were significantly higher than the soil background values in Henan Province and exceeded the risk screening values of Soil Environmental Quality - Risk Control Standard for Soil Contamination of Development Land (Trial) (GB 36600-2018) for Class Ⅱ land by 58.37 times and 4.41 times, respectively. The comprehensive pollution index and potential ecological index in various points of the research area followed the order of waste lead battery dismantling area>storage area>lead block molding area. Except for the lead block molding area where the soil arsenic was lightly polluted, the lead and arsenic in the soil of other research areas were heavily polluted, and there was an extremely strong potential ecological risk. Meanwhile, the carcinogenic and non-carcinogenic risks of heavy metals in three exposure pathways followed the order of ingestion of soil>dermal absorption of soil>inhalation of soil. The total cancer risk index of arsenic at each point was found to follow the order of lead smelting furnace area>waste lead battery dismantling area>storage area>lead block molding area>10−6. Lead and arsenic levels had a significant effect on the maximum total non-carcinogenic risk indices, counting 25.00, 160.69, 1.73, and 11.71 for adults and children, respectively, with the non-carcinogenic risk of lead to children being more obvious. Both were higher than the US EPA's maximum acceptable level, and there was an extremely strong potential health risk to nearby residents. In addition, the probability of children's blood lead concentration exceeding 100 μg/L was as high as 99.99%, calculated by the IEUBK model, which was much higher than the safety probability limit of 5%.
-
Key words:
- waste lead battery /
- heavy metals /
- blood lead level /
- pollution evaluation /
- health evaluation
-
表 1 污染指数法分级标准
Table 1. Classification criteria of pollution index method
等级划分 PI PN 污染水平 Ⅰ ≤0.7 ≤0.7 清洁 Ⅱ 0.7~1.0 0.7~1.0 尚清洁(警戒线) Ⅲ 1.0~2.0 1.0~2.0 轻污染 Ⅳ 2.0~3.0 2.0~3.0 中污染 Ⅴ >3.0 >3.0 重污染 表 2 潜在生态风险指标与分级关系
Table 2. Relationship between potential ecological risk indicators and classifications
等级 EI RI 生态风险程度等级 Ⅰ <40 <150 轻微 Ⅱ 40~80 150~300 中等 Ⅲ 80~160 300~600 强 Ⅳ 160~320 ≥600 很强 Ⅴ ≥320 极强 表 3 研究区土壤重金属浓度及主要理化性质统计分析
Table 3. Statistical analysis of heavy metal content and main physicochemical properties of soils in the study area
土壤指标 最大值 最小值 平均值 标准偏差 变异系数/% N1点位数值 河南背景值
(表层)GB 36600—2018二类用地
风险筛选值镉浓度/(mg/kg) 0.73 0.07 0.53 1.30 15.39 0.39 0.06 65 镍浓度/(mg/kg) 29.70 22.30 26.69 2.32 8.70 18.50 27.40 900 铜浓度/(mg/kg) 44.40 18.80 27.57 7.58 27.49 15.80 20.00 18 000 汞浓度/(mg/kg) 0.018 0.008 0.01 0.00 23.76 0.012 0.025 38 砷浓度1)/(mg/kg) 368.33 65.80 264.84 86.58 32.69 1.60 9.80 60 砷浓度2)/(mg/kg) 48.70 8.70 32.03 11.83 161.29 60 铅浓度1)/(mg/kg) 1.17×105 2.57×104 4.67×104 3.80×104 81.23 35.70 22.30 800 铅浓度2)/(mg/kg) 5.65×103 3.56×102 1.13×103 1.83×103 36.94 800 pH 11.10 7.50 8.37 0.96 11.47 7.70 7.70 有机质浓度/(g/kg) 15.12 7.65 12.86 2.27 17.63 24.51 阳离子交换量/(cmol/kg) 14.41 6.25 10.25 2.58 25.21 25.12 1)为厂区表层土壤(0~0.2 m);2)为厂区深层土壤(0.2~0.5 m)。 表 4 研究区各采样点位土壤重金属污染评价指数
Table 4. Evaluation index of soil heavy metal pollution at various points in the study area
区域 采样点位 铅 砷 PN 等级 PI 等级 PI 等级 拆解区 T1 70.25 Ⅴ 3.90 Ⅴ 56.17 Ⅴ T2 32.13 Ⅴ 4.87 Ⅴ 26.22 Ⅴ 储存区 T3 13.00 Ⅴ 5.52 Ⅴ 11.27 Ⅴ T4 39.00 Ⅴ 4.07 Ⅴ 31.50 Ⅴ 铅块成型区 T5 23.50 Ⅴ 1.10 Ⅲ 18.76 Ⅴ 炼铅炉区 T6 19.38 Ⅴ 4.37 Ⅴ 16.07 Ⅴ T7 146.25 Ⅴ 6.14 Ⅴ 116.61 Ⅴ T8 124.00 Ⅴ 5.34 Ⅴ 98.89 Ⅴ 表 5 研究区各点位土壤重金属潜在生态风险评价指数
Table 5. Evaluation index of potential ecological risk of soil heavy metals at each point in the study area
区域 采样点位 铅 砷 RI 等级 EI 等级 EI 等级 拆解区 T1 351.25 Ⅴ 58.5 Ⅱ 409.75 Ⅲ T2 160.65 Ⅳ 73.05 Ⅱ 233.70 Ⅱ 储存区 T3 65.00 Ⅱ 82.8 Ⅲ 147.8 Ⅰ T4 195.00 Ⅳ 4.07 Ⅰ 256.05 Ⅱ 铅块成型区 T5 117.50 Ⅲ 1.10 Ⅰ 134.00 Ⅰ 炼铅炉区 T6 96.90 Ⅲ 65.55 Ⅱ 162.45 Ⅱ T7 731.25 Ⅴ 92.10 Ⅲ 823.35 Ⅳ T8 620.00 Ⅴ 80.10 Ⅲ 700.10 Ⅳ 表 6 研究区各点位不同途径重金属非致癌暴露风险值
Table 6. Risk value of non-carcinogenic exposure to heavy metals by different pathways at various points in the study area
区域 采样点位 $ {\mathrm{H}\mathrm{Q}}_{\mathrm{P}\mathrm{b}} $ $ {\mathrm{H}\mathrm{I}}_{\mathrm{P}\mathrm{b}} $ $ {\mathrm{H}\mathrm{Q}}_{\mathrm{A}\mathrm{s}} $ $ {\mathrm{H}\mathrm{I}}_{\mathrm{A}\mathrm{s}} $ 经口摄入 皮肤接触 呼吸吸入 经口摄入 皮肤接触 呼吸吸入 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 成人 儿童 电池拆
解区T1 2.49×
1011.60×
1026.63×
10−22.99×
10−14.38×
10−37.06×
10−32.50×
1011.6×
1021.21 7.79 1.38×
10−22.18×
10−21.72×
10−48.41×
10−41.22 7.82 T2 1.14×
1017.33×
1013.03×
10−21.37×
10−12.01×
10−33.23×
10−31.14×
1017.35×
1011.51 9.73 1.72×
10−22.73×
10−22.15×
10−41.05×
10−31.53 9.76 储存区 T3 4.61 2.97×
1011.23×
10−25.54×
10−28.11×
10−41.31×
10−34.62 2.97×
1011.71 1.10×
1011.95×
10−23.09×
10−22.43×
10−41.19×
10−31.73 1.11×
101T4 1.38×
1018.90×
1013.68×
10−21.66×
10−12.43×
10−33.92×
10−31.39×
1018.92×
1011.26 8.13 1.44×
10−22.28×
10−21.79×
10−48.78×
10−41.28 8.15 铅块成
型区T5 8.33 5.37×
1012.22×
10−21.00×
10−11.47×
10−32.36×
10−38.36 5.38×
1013.40×
10−12.19 3.88×
10−36.13×
10−34.83×
10−52.36×
10−43.44×
10−12.20 炼铅
炉区T6 6.87 4.42×
1011.83×
10−28.26×
10−21.21×
10−31.95×
10−36.89 4.43×
1014.84×
10−17.48×
10−15.52×
10−32.09×
10−32.09×
10−48.07×
10−54.90×
10−17.50×
10−1T7 5.19×
1013.34×
1021.38×
10−16.23×
10−19.13×
10−31.47×
10−25.20×
1013.35×
1026.80×
10−11.05 7.76×
10−32.94×
10−32.94×
10−41.13×
10−46.88×
10−11.05 T8 4.40×
1012.83×
1021.17×
10−15.28×
10−17.74×
10−31.25×
10−24.41×
1012.84×
1025.92×
10−19.14×
10−16.75×
10−32.56×
10−32.55×
10−49.87×
10−55.99×
10−19.17×
10−1表 7 研究区各点位不同途径重金属致癌暴露风险值
Table 7. Risk value of carcinogenic exposure to heavy metals by different pathways at various points in the study area
区域 采样点位 经口摄入 皮肤接触 呼吸吸入 $ {\mathrm{C}\mathrm{R}}_{\mathrm{A}\mathrm{s}} $ 成人 儿童 成人 儿童 成人 儿童 成人 儿童 拆解区 T1 1.95×10−4 3.01×10−4 2.22×10−6 8.42×10−7 3.47×10−7 1.34×10−7 1.97×10−4 3.02×10−4 T2 2.43×10−4 3.75×10−4 2.77×10−6 1.05×10−6 4.33×10−7 1.67×10−7 2.46×10−4 3.77×10−4 储存区 T3 2.75×10−4 4.26×10−4 3.14×10−6 1.19×10−6 4.91×10−7 1.90×10−7 2.79×10−4 4.27×10−4 T4 2.03×10−4 3.14×10−4 2.31×10−6 8.78×10−7 3.62×10−7 1.40×10−7 2.06×10−4 3.15×10−4 铅块成型区 T5 5.47×10−5 8.45×10−5 6.24×10−7 2.37×10−7 9.75×10−8 3.76×10−8 5.54×10−5 8.48×10−5 炼铅炉区 T6 2.18×10−4 3.37×10−4 2.48×10−7 9.43×10−7 3.88×10−7 1.50×10−7 2.21×10−4 3.38×10−4 T7 3.06×10−4 4.73×10−4 3.49×10−6 1.32×10−6 5.45×10−7 2.11×10−7 3.10×10−4 4.75×10−4 T8 2.66×10−4 4.11×10−4 3.04×10−6 1.15×10−6 4.75×10−7 1.83×10−7 2.70×10−4 4.13×10−4 表 8 铅暴露下儿童血铅浓度预估值
Table 8. Children's predicted blood lead concentrations under lead exposure
年龄/岁 每日土壤和尘土
摄入量/(μg/d)每日铅总摄入
量/(μg/d)血铅浓度/(μg/L) 0~1 175.66 176.35 767.00 1~2 200.88 202.07 721.00 2~3 167.645 169.15 581.00 3~4 170.32 172.04 531.00 4~5 186.87 188.75 535.00 5~6 166.76 168.98 488.00 6~7 178.42 180.70 460.00 -
[1] 廖海金. 废旧铅酸蓄电池回收亟须规范[N]. 人民政协报, 2021-08-02(6). [2] LANPHEAR B P, HORNUNG R, KHOURY J, et al. Low-level environmental lead exposure and children's intellectual function: an international pooled analysis[J]. Environmental Health Perspectives,2005,113(7):894-899. doi: 10.1289/ehp.7688 [3] 路一帆, 陆胤, 蔡慧, 等.铅蓄电池厂遗留场地重金属污染分析及健康风险评价[J]. 环境工程,2022,40(1):135-140.LU Y F, LU Y, CAI H, et al. Pollution analysis and health risk assessment of heavy metals in field left by a lead-acid battery factory[J]. Environmental Engineering,2022,40(1):135-140. [4] 孙荣基, 陈志莉, 盛利伟.铅蓄电池厂遗留场地污染分析与风险评价[J]. 西南大学学报(自然科学版),2017,39(8):146-152.SUN R J, CHEN Z L, SHENG L W. Pollution analysis and risk assessment of the remaining site of a relocated lead acid battery factory[J]. Journal of Southwest University (Natural Science Edition),2017,39(8):146-152. [5] SUN Z H, XIE X D, WANG P, et al. Heavy metal pollution caused by small-scale metal ore mining activities: a case study from a polymetallic mine in South China[J]. Science of the Total Environment,2018,639:217-227. doi: 10.1016/j.scitotenv.2018.05.176 [6] 孔林, 刘杰民, 韦艳, 等.贵州省典型铅锌矿区居民血液总汞和甲基汞暴露及健康风险模型预测评估[J]. 环境科学研究,2021,34(6):1499-1508.KONG L, LIU J M, WEI Y, et al. Total mercury and methyl mercury in blood of inhabitant and their associated modelling prediction evaluation in typical lead-zinc mining region, Guizhou Province, China[J]. Research of Environmental Sciences,2021,34(6):1499-1508. [7] WANG S, JIN Y, CHEN J, et al. Blood lead levels of Chinese children from 1991 to 2020: based on Monte Carlo simulation[J]. Environmental Pollution,2021,278:116823. doi: 10.1016/j.envpol.2021.116823 [8] US Environmental Protection Agency. Risk assessment guidance for superfund: human health evaluation manual. Part A. interim final[R]. Washington DC: US EPA, 1989. [9] 生态环境部. 建设用地土壤污染状况调查 技术导则: HJ 25.1—2019[S]. 北京: 中国环境出版社, 2019. [10] 张浩, 王辉, 汤红妍, 等.铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报,2020,40(3):1085-1094.ZHANG H, WANG H, TANG H Y, et al. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond[J]. Acta Scientiae Circumstantiae,2020,40(3):1085-1094. [11] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018. [12] 何绪文, 王宇翔, 房增强, 等.铅锌矿区土壤重金属污染特征及污染风险评价[J]. 环境工程技术学报,2016,6(5):476-483. doi: 10.3969/j.issn.1674-991X.2016.05.070HE X W, WANG Y X, FANG Z Q, et al. Pollution characteristics and pollution risk evaluation of heavy metals in soil of lead-zinc mining area[J]. Journal of Environmental Engineering Technology,2016,6(5):476-483. doi: 10.3969/j.issn.1674-991X.2016.05.070 [13] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research,1980,14(8):975-1001. doi: 10.1016/0043-1354(80)90143-8 [14] 徐争启, 倪师军, 庹先国, 等.潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术,2008,31(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology,2008,31(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030 [15] WANG H, ZHANG H, TANG H Y, et al. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China[J]. Environmental Earth Sciences,2021,80(7):1-12. [16] 王涛, 司万童, 欧阳琰, 等.陕西某钼矿区土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(4):440-446. doi: 10.12153/j.issn.1674-991X.2019.01.080WANG T, SI W T, OUYANG Y, et al. Characteristic and evaluation of soil heavy metals pollution in the molybdenum mine area in Shaanxi[J]. Journal of Environmental Engineering Technology,2019,9(4):440-446. doi: 10.12153/j.issn.1674-991X.2019.01.080 [17] 程睿.铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095 [18] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版社, 2019. [19] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. [20] ZHANG X Y, CARPENTER D O, SONG Y J, et al. Application of the IEUBK model for linking Children's blood lead with environmental exposure in a mining site, South China[J]. Environmental Pollution,2017,231:971-978. doi: 10.1016/j.envpol.2017.08.116 [21] 刘爱华, 李涛, 张帅明, 等.中国18城市儿童血铅水平及影响因素现况调查[J]. 中国妇幼健康研究,2018,29(5):539-542.LIU A H, LI T, ZHANG S M, et al. Study on blood lead level and related risk factors among children in 18 cities of China[J]. Chinese Journal of Woman and Child Health Research,2018,29(5):539-542. [22] 邵丰收, 周皓韵.河南省主要元素的土壤环境背景值[J]. 河南农业,1998(10):29. [23] 倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报, 2022, 12(3): 878-885 .NI B H, SHI W L, CHEN J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 878-885. [24] 赵一鸣, 董颖博, 林海, 等.土壤理化性质对重金属形态的影响[J]. 农业工程,2018,8(12):38-43. doi: 10.3969/j.issn.2095-1795.2018.12.012ZHAO Y M, DONG Y B, LIN H, et al. Influence of soil physical and chemical properties on forms of heavy metals[J]. Agricultural Engineering,2018,8(12):38-43. doi: 10.3969/j.issn.2095-1795.2018.12.012 [25] 白卫南, 孙启宏, 乔琦, 等.铅蓄电池行业重金属产污系数修正[J]. 环境工程技术学报,2015,5(5):435-441. doi: 10.3969/j.issn.1674-991X.2015.05.069BAI W N, SUN Q H, QIAO Q, et al. Research on modification of heavy metal generation coefficients in lead-acid battery manufacture[J]. Journal of Environmental Engineering Technology,2015,5(5):435-441. doi: 10.3969/j.issn.1674-991X.2015.05.069 [26] 丁亚丽, 廖敏, 方至萍, 等.新建铅蓄电池集聚区对周边土壤环境的影响: 基于重金属空间特征[J]. 环境科学,2019,40(9):4244-4252.DING Y L, LIAO M, FANG Z P, et al. Impact of newly build lead-acid battery agglomeration area on the surrounding soil environment: a study based on the spatial characteristics of heavy metals[J]. Environmental Science,2019,40(9):4244-4252. [27] 刘庚, 牛俊杰, 张朝, 等.某铅酸蓄电池污染场地表层土壤重金属Pb空间分布预测研究[J]. 环境科学,2014,35(12):4712-4719.LIU G, NIU J J, ZHANG C, et al. Spatial distribution prediction of surface soil Pb in a battery contaminated site[J]. Environmental Science,2014,35(12):4712-4719. [28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2012. [29] 葛佳.铅污染场地的人类健康风险评估及应用实例[J]. 上海国土资源,2018,39(4):35-38. doi: 10.3969/j.issn.2095-1329.2018.04.007GE J. Human health risk assessment and application of lead-contaminated sites[J]. Shanghai Land & Resources,2018,39(4):35-38. doi: 10.3969/j.issn.2095-1329.2018.04.007 [30] 胡佳, 陈建伟, 周宜开.IEUBK模型的应用概况及其本土化的初步探讨[J]. 环境与健康杂志,2013,30(7):655-658.HU J, CHEN J W, ZHOU Y K. IEUBK model and its application in China[J]. Journal of Environment and Health,2013,30(7):655-658. [31] WU Y X, WU J H, TAN H J, et al. Distributions of chlorinated paraffins and the effects on soil microbial community structure in a production plant brownfield site[J]. Environmental Pollution,2020,262:114328. doi: 10.1016/j.envpol.2020.114328 [32] 耿治鹏, 宋颉, 王春林, 等.污染场地土壤重金属污染空间特征分析: 以某搬迁电镀厂为例[J]. 环境工程技术学报,2023,13(1):295-302. doi: 10.12153/j.issn.1674-991X.20210617GENG Z P, SONG J, WANG C L, et al. Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology,2023,13(1):295-302. doi: 10.12153/j.issn.1674-991X.20210617 [33] 毛盼, 王明娅, 孙昂, 等.某典型废弃硫酸场地土壤重金属污染特征与评价[J]. 环境化学,2022,41(2):511-525. doi: 10.7524/j.issn.0254-6108.2021071304MAO P, WANG M Y, SUN A, et al. Heavy metal pollution characteristics and assessment in soil of a typical abandoned sulfuric acid site[J]. Environmental Chemistry,2022,41(2):511-525. doi: 10.7524/j.issn.0254-6108.2021071304 [34] 李晓晓, 韩瑞芳, 陈倩倩, 等.土壤重金属迁移转化领域研究的文献计量分析[J]. 土壤通报,2020,51(3):733-740.LI X X, HAN R F, CHEN Q Q, et al. Bibliometric analysis for migration and transformation of heavy metals in soils[J]. Chinese Journal of Soil Science,2020,51(3):733-740. [35] 史锐, 岳荣, 张红.有色金属采选冶基地周边土壤中重金属纵向分层研究[J]. 土壤通报,2016,47(1):186-191.SHI R, YUE R, ZHANG H. Research on vertical distribution of heavy metal in soil around non-ferrous metal industry area[J]. Chinese Journal of Soil Science,2016,47(1):186-191. [36] HUANG Y, CHEN Q Q, DENG M H, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China[J]. Journal of Environmental Management,2018,207:159-168. [37] 张迪, 周明忠, 熊康宁, 等.贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J]. 环境科学研究,2021,34(5):1247-1257.ZHANG D, ZHOU M Z, XIONG K N, et al. Assessment of pollution and human health risk from heavy metals in soils and crops in the lower Cambrian black shale area, Zunyi, Guizhou Province[J]. Research of Environmental Sciences,2021,34(5):1247-1257. [38] 黄进, 曾恬静, 董敏慧, 等.废铅蓄电池管理现状、问题与完善回收体系的建议: 以湖南省为例[J]. 环境保护,2021,49(6):48-51.HUANG J, ZENG T J, DONG M H, et al. Management status and problems of waste lead-acid batteries and suggestions for improving the recycling system: take Hunan Province for example[J]. Environmental Protection,2021,49(6):48-51. ⊕