氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应

Differential responses of five wetland plants and their root microbial communities under ofloxacin pollution stress

  • 摘要: 人工湿地中植物及其根系微生物对环境中的抗生素具有较好的去除效果,但对抗生素胁迫下多种植物及微生物响应特征的了解仍然不足,因此有必要研究不同浓度抗生素胁迫下植物及微生物的差异性响应特征。探讨了典型极性抗生素氧氟沙星(OFL)胁迫下5种湿地植物(唐菖蒲、风车草、水葱、水芹、灯心草)-微生物系统对OFL的去除性能。基于不同植物对OFL的去除效率,对唐菖蒲和风车草的根系活力、活性氧、抗氧化系统进行研究,同时分析其根系微生物在OFL胁迫下的响应特征。结果表明:5种湿地植物对OFL的去除效果具有明显差异性,其中风车草对OFL的去除性能最佳,其次是唐菖蒲。植物-微生物系统在不同浓度OFL胁迫下表现出不同敏感性,以10 mg/L为转折点,当OFL浓度低于10 mg/L时,可促进唐菖蒲和风车草植物根系生长,增强植物根系活力以及根系抗氧化酶的活性;当OFL浓度超过10 mg/L时,唐菖蒲和风车草根系被OFL毒害,植物根系活力和抗氧化酶的活性受到抑制。利用高通量测序技术对根系微生物群落进行测定,结果表明,低浓度OFL(1 mg/L)与植物根系微生物群落多样性及物种丰富度呈正相关,高浓度(50 mg/L)下则呈负相关;利用PICRUSt功能软件对微生物群落功能进行预测,发现高浓度OFL胁迫可加快植物根系微生物的代谢速度。

     

    Abstract: The plants and their root microorganisms in the constructed wetland have a good removal effect on the antibiotics in the environment, but the understanding of the response characteristics of various plants and microorganisms under antibiotic stress is still insufficient and unclear, so it is necessary to clearly study the differential response characteristics of plants and microorganisms under different concentrations of antibiotic stress. The removal performance of ofloxacin (OFL) by five wetland plants (Gladiolus hybrids, Cyperus alternifolius, Scirpus validus Vahl, Oenanthe javanica, Juncus effusus L.) microbial systems under the stress of OFL, a typical polar antibiotic, was studied. Based on the removal efficiency of OFL by different plants, the root activity, active oxygen and antioxidant system of Gladiolus hybrids and Cyperus alternifolius were studied, and the response characteristics of their root microorganisms under OFL stress were analyzed. The results showed that the five wetland plants had significant differences in the removal of OFL, among which the Cyperus alternifolius had the best removal performance of OFL, followed by Gladiolus hybrids. The plant-microbial systems showed different sensitivities under OFL stress of different concentrations. Taking 10 mg/L as the turning point, when OFL concentration was below 10 mg/L, it could promote plant root growth, plant root activity and root antioxidant enzyme activity. When OFL concentration exceeded 10 mg/L, Gladiolus hybrids and Cyperus alternifolius roots were poisoned by OFL, and plant root activity and antioxidant enzyme activity were inhibited. The measurement results of root microbial community using high-throughput sequencing technology showed that low concentration OFL (1 mg/L) was positively correlated with plant root microbial community diversity and species richness, while high concentration OFL (50 mg/L) was negatively correlated. Using PICRUSt function software to predict the function of microbial community, it was found that high concentration OFL stress could accelerate the metabolic rate of plant root microorganisms.

     

/

返回文章
返回