Decision-making and implementation effect analysis of wastewater emergency treatment of Xiangshui Explosion Accident
-
摘要:
响水爆炸事故发生后,爆炸中心区及周边河流水体受到不同程度的化学品污染,污水应急处理难度极大,如何科学有效地开展事故污水的应急处理是现场环境应急工作的重中之重。介绍了该次爆炸事故环境应急水质分析、目标制定、处理方案和工程实施方案制定等应急处理过程,总结分析了该爆炸事故污水应急处理处置的成效与经验。现场环境应急过程中发展和实践了化工园区突发环境事件污水“快速封堵—安全转移—妥善处置”的应急技术链条,科学制定了污水应急处理和工程实施方案,成功实现了爆炸区各类污水的应急处理,达到了“不发生次生环境灾害”和“不让一滴污水进入灌河”的应急目标,验证了现场应急决策的科学性和正确性。
Abstract:After the special major explosion accident in Xiangshui, the central area of the explosion and the surrounding rivers were polluted by chemicals to different degrees, and the emergency treatment of the accidental wastewater was extremely difficult. How to scientifically and effectively carry out the emergency treatment of the accidental wastewater was the top priority of the on-site environmental emergency response. The emergency treatment decision-making processes, such as the environmental emergency water quality analysis, target setting, treatment and engineering implementation plan formulation of the explosion accident, were mainly introduced. The effectiveness, experience of the emergency treatment and disposal of wastewater in the explosion accident were also summarized and analyzed. In the process of on-site environmental emergency, the emergency technical chain of "quick plugging-safe transfer-proper disposal" in sudden environmental accidents in the chemical industry park was developed and practiced. The emergency wastewater treatment and engineering implementation plan was scientifically formulated, and the emergency treatment of all kinds of wastewater in the explosion area was successfully realized. Furthermore, the emergency treatment of wastewater achieved the emergency goals of "no secondary environmental disasters" and "not letting a drop of wastewater enter the Guan River", which verified the scientificity and correctness of on-site emergency decision-making. The successful experience accumulated in the environmental emergency response to the special major explosion accident in Xiangshui could provide a reference for the emergency response to similar sudden environmental pollution accidents in the future.
-
Key words:
- Xiangshui /
- explosion accident /
- wastewater /
- emergency treatment /
- decision-making /
- engineering effects
-
表 1 排放指标和排放标准
Table 1. Emission indicators and emission standards
排放指标 排放标准/(mg/L) 排放指标 排放标准/(mg/L) 悬浮物 70 总磷 0.5 BOD5 20 苯胺类 0.5 COD 80 硝基苯类 2.0 氨氮 15 三氯甲烷 0.3 甲苯 0.1 二氯甲烷 0.2 氯苯 0.2 1,2-二氯乙烷 0.3 苯 0.1 表 2 不同种类污水特征以及处理工艺
Table 2. Characteristics and treatment technology of different kinds of sewage
污水种类 水质特征 水量/万m3 处理工艺 爆炸大坑污水 强酸、高COD、高氨氮 2.1 活性炭好氧强曝气预处理+生物处理组合工艺 事故厂区地面积水 强酸、腐蚀性、高浓度有机污染物 0.1 石灰中和、收集转运 重污染河水 苯胺等高浓度有机污染物 8.5 芬顿氧化+活性炭吸附+生物处理工艺 轻污染河水 COD较高 3.7 污水处理厂 微污染河水 低浓度有机污染物 14.3 活性炭吸附 表 3 污染物削减量汇总
Table 3. Summary of pollutant reductions
处理设施 处理对象 污水处理量/m3 污染物削减量/kg COD 氨氮 苯胺类 芬顿氧化预处理 重污染河水 116 260 64 185.8 1 898.1 7 123.7 强化生物活性炭预处理 爆炸大坑污水 20 580 33 319.6 209.4 6.1 陈家港污水处理厂 综合污水 340 133 68 564.5 6 763.2 898.6 合计 166 069.9 8 870.7 8 028.4 -
[1] 邓小英.突发环境事件应急监测问题分析及对策初探[J]. 节能与环保,2019(3):22-23. doi: 10.3969/j.issn.1009-539X.2019.03.009DENG X Y. Analysis on emergency monitoring of emergency environmental events and preliminary study on the countermeasures[J]. Energy Conservation and Environmental Protection,2019(3):22-23. doi: 10.3969/j.issn.1009-539X.2019.03.009 [2] 刘丽, 徐亚博, 刘振翼.化工事故多米诺效应定量风险评价研究[J]. 中国安全生产科学技术,2008,4(2):49-52.LIU L, XU Y B, LIU Z Y. Progress on quantitatice risk assessmant of domino effect in chemical accidents[J]. Journal of Safety Science and Technology,2008,4(2):49-52. [3] 王冠颖, 刘晓玲, 魏健, 等.响水化工园区爆炸事故污水应急预处理工艺筛选[J]. 环境科学学报,2020,40(12):4318-4324.WANG G Y, LIU X L, WEI J, et al. Screening on emergency pretreatment process for accidental wastewater of explosion in Xiangshui chemical industry park[J]. Acta Scientiae Circumstantiae,2020,40(12):4318-4324. [4] 宋永会, 韩璐, 温丽丽, 等.突发环境事件风险源识别与监控技术创新进展: Ⅱ. 环境风险源监控技术与案例[J]. 环境工程技术学报,2015,5(5):353-360. doi: 10.3969/j.issn.1674-991X.2015.05.056SONG Y H, HAN L, WEN L L, et al. Technological innovation progress of risk sources identification and monitoring of sudden environmental pollution accidents: Ⅱ. risk sources monitoring technology and case study[J]. Journal of Environmental Engineering Technology,2015,5(5):353-360. doi: 10.3969/j.issn.1674-991X.2015.05.056 [5] 杜红岩, 王延平, 卢均臣.2012年国内外石油化工行业事故统计分析[J]. 中国安全生产科学技术,2013,9(6):184-188.DU H Y, WANG Y P, LU J C. Statistical analysis on petroleum and chemical accidents at home and abroad during the period of 2012[J]. Journal of Safety Science and Technology,2013,9(6):184-188. [6] 宋永会, 袁鹏, 彭剑峰, 等.突发环境事件风险源识别与监控技术创新进展: (Ⅰ). 环境风险源识别技术与应用[J]. 环境工程技术学报,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055SONG Y H, YUAN P, PENG J F, et al. Technological innovation progress of risk sources identification and monitoring of sudden environmental pollution accidents: (Ⅰ). risk sources identification technologies and applications[J]. Journal of Environmental Engineering Technology,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055 [7] 于靖靖, 梁田, 罗会龙, 等.近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究,2022,35(5):1110-1119. [8] 王小兵, 刘洁.化工事故中的工程伦理责任分析: 以盛华化工爆炸事故为例[J]. 科技经济导刊,2019((7)):169-170. [9] 崔蔚.江苏响水“3.21”特别重大爆炸事故调查与启示[J]. 消防科学与技术,2020,39(4):570-575. doi: 10.3969/j.issn.1009-0029.2020.04.039CUI W. Investigation and inspiration of 3.21 particularly serious explosion in Xiangshui Jiangsu[J]. Fire Science and Technology,2020,39(4):570-575. doi: 10.3969/j.issn.1009-0029.2020.04.039 [10] 丁斌.从“3.21”特别重大事故谈危险废物的安全管理[J]. 安徽化工,2020,46(4):106-108. doi: 10.3969/j.issn.1008-553X.2020.04.031DING B. Discussion on safety management of hazardous waste from “3.21” special serious accident[J]. Anhui Chemical Industry,2020,46(4):106-108. doi: 10.3969/j.issn.1008-553X.2020.04.031 [11] 陈昀, 王方园, 洪华嫦, 等.环境样品中苯胺类化合物检测方法的研究进展[J]. 广州化工,2012,40(1):12-15. doi: 10.3969/j.issn.1001-9677.2012.01.006CHEN Y, WANG F Y, HONG H C, et al. Research progrers of determination method of amine in environmental samples[J]. Guangzhou Chemical Industry,2012,40(1):12-15. doi: 10.3969/j.issn.1001-9677.2012.01.006 [12] 李利荣, 吴宇峰, 杨家凤, 等.固相萃取-气相色谱法测定水中硝基苯类有机污染物的方法研究[J]. 中国环境监测,2007,23(1):11-15. doi: 10.3969/j.issn.1002-6002.2007.01.004LI L R, WU Y F, YANG J F, et al. Analytical method for aromatic nitrocompounds in water by SPE GC-ECD[J]. Environmental Monitoring in China,2007,23(1):11-15. doi: 10.3969/j.issn.1002-6002.2007.01.004 [13] 帅放文, 王向峰, 雷玉萍, 等.四种苯甲酸检测方法比较研究[J]. 中国食品添加剂,2016(4):161-165. doi: 10.3969/j.issn.1006-2513.2016.04.018SHUAI F W, WANG X F, LEI Y P, et al. Comparative study on four kinds of detection methods of benzoic acid[J]. China Food Additives,2016(4):161-165. doi: 10.3969/j.issn.1006-2513.2016.04.018 [14] 周丽屏, 邓燕君, 刘移民.1, 2-二氯乙烷接触生物监测指标及检测方法研究[J]. 中华预防医学杂志,2016,50(2):179-183. doi: 10.3760/cma.j.issn.0253-9624.2016.02.015 [15] 薛洪滨, 张雪洁, 刘伟伟.顶空气相色谱法测定饮用水中的三氯甲烷及四氯化碳[J]. 河南预防医学杂志,2021,32(1):46-48.XUE H B, ZHANG X J, LIU W W. Determination of chloroform and tetrachloromethane in drinking water by headspace gas chromatography[J]. Henan Journal of Preventive Medicine,2021,32(1):46-48. [16] PALTA S, SAROA R, PALTA A. Overview of the coagulation system[J]. Indian Journal of Anaesthesia,2014,58(5):515-523. doi: 10.4103/0019-5049.144643 [17] GUR-REZNIK S, KATZ I, DOSORETZ C G. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research,2008,42(6/7):1595-1605. [18] 何锦垚, 魏健, 张嘉雯, 等.臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报,2019,13(10):2385-2392. doi: 10.12030/j.cjee.201902043HE J Y, WEI J, ZHANG J W, et al. Advanced treatment of antibiotic pharmaceutical wastewater by catalytic ozonation combined with BAF process[J]. Chinese Journal of Environmental Engineering,2019,13(10):2385-2392. doi: 10.12030/j.cjee.201902043 [19] 魏健, 范冬琪, 宋永会, 等.Fenton氧化/混凝沉淀协同处理腈纶聚合废水[J]. 环境工程学报,2015,9(1):14-18. doi: 10.12030/j.cjee.20150103WEI J, FAN D Q, SONG Y H, et al. Treatment of acrylic fiber polymerization wastewater by Fenton oxidation cooperated with coagulation[J]. Chinese Journal of Environmental Engineering,2015,9(1):14-18. doi: 10.12030/j.cjee.20150103 [20] ZHAO X L, LI Y Y, LU J H, et al. UV/H2O2 oxidation of chloronitrobenzenes in waters revisited: hydroxyl radical induced self-nitration[J]. Journal of Photochemistry and Photobiology A:Chemistry,2021,410:113162. doi: 10.1016/j.jphotochem.2021.113162 [21] ZHONG H Y, LIU X, TIAN Y, et al. Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation[J]. Science of the Total Environment,2021,776:145909. doi: 10.1016/j.scitotenv.2021.145909 [22] MOHAMMED M, MEKALA L P, CHINTALAPATI S, et al. New insights into aniline toxicity: aniline exposure triggers envelope stress and extracellular polymeric substance formation in Rubrivivax benzoatilyticus JA2[J]. Journal of Hazardous Materials,2020,385:121571. doi: 10.1016/j.jhazmat.2019.121571 [23] DVOŘÁK L, LEDERER T, JIRKU V, et al. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor[J]. Process Biochemistry,2014,49(1):102-109. doi: 10.1016/j.procbio.2013.10.011 [24] XUE G, ZHENG M H, QIAN Y J, et al. Comparison of aniline removal by UV/CaO2 and UV/H2O2: degradation kinetics and mechanism[J]. Chemosphere,2020,255:126983. ⊗ doi: 10.1016/j.chemosphere.2020.126983