留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响水“3·21”爆炸事故污水应急处理决策与实施效果分析

段丽杰 王健 魏健 王冠颖 宋永会

段丽杰,王健,魏健,等.响水“3·21”爆炸事故污水应急处理决策与实施效果分析[J].环境工程技术学报,xxxx,x(x): x-xx doi: 10.12153/j.issn.1674-991X.20220388
引用本文: 段丽杰,王健,魏健,等.响水“3·21”爆炸事故污水应急处理决策与实施效果分析[J].环境工程技术学报,xxxx,x(x): x-xx doi: 10.12153/j.issn.1674-991X.20220388
DUAN L J,WANG J,WEI J,et al.Decision-making and implementation effect analysis of wastewater treatment of Xiangshui '3.21' Explosion Accident[J].Journal of Environmental Engineering Technology,xxxx,x(x): x-xx doi: 10.12153/j.issn.1674-991X.20220388
Citation: DUAN L J,WANG J,WEI J,et al.Decision-making and implementation effect analysis of wastewater treatment of Xiangshui "3.21" Explosion Accident[J].Journal of Environmental Engineering Technology,xxxx,x(x): x-xx doi: 10.12153/j.issn.1674-991X.20220388

响水“3·21”爆炸事故污水应急处理决策与实施效果分析

doi: 10.12153/j.issn.1674-991X.20220388
详细信息
  • 中图分类号: X52

Decision-making and implementation effect analysis of wastewater treatment of Xiangshui "3.21" Explosion Accident

  • 摘要:

    响水“3·21”特别重大爆炸事故发生后,爆炸中心区及周边河流水体受到不同程度的化学品污染,污水应急处理难度极大,如何科学有效地开展事故污水的应急处理是现场环境应急工作的重中之重。本文主要介绍了此次爆炸事故环境应急水质分析、目标制定、处理方案和工程实施方案制定等应急处理过程,并总结分析了此次爆炸事故污水应急处理处置的成效与经验。现场环境应急过程中发展和实践了化工园区突发环境事件污水“快速封堵—安全转移—妥善处置”的应急技术链条,科学制定了污水应急处理和工程实施方案,成功实现了爆炸区各类污水的应急处理,达到了“不发生次生环境灾害”和“不让一滴污水进入灌河”的应急目标,验证了现场应急决策的科学性和正确性。响水“3·21”特别重大爆炸事故环境应急处理积累的成功经验,可为今后类似突发环境污染事件的应急处置提供参考借鉴。

     

  • 图  1  响水化工园区受污染水体分布

    Figure  1.  Distribution of polluted water bodies in Xiangshui Chemical Park

    图  2  爆炸事故污水应急处理过程

    Figure  2.  The emergency treatment process of wastewater from the explosion accident

    图  3  事故污水处理工艺流程图

    Figure  3.  Process flow chart of accidental wastewater treatment

    图  4  污水处理厂累计进水水量及每日进水水量

    Figure  4.  The cumulative influent water volume and the daily influent water volume

    图  5  陈家港污水处理厂出水(a)氨氮变化(b)COD变化(c)pH变化(d)苯浓度变化

    Figure  5.  Chenjiagang Wastewater Treatment Plant effluent (a) ammonia (b) COD (c) pH (d) benzene

    表  1  排放指标和排放标准

    Table  1.   Emission indicators and emission standards

    排放指标排放标准/(mg/L)排放指标排放标准/(mg/L)
    悬浮物70总磷0.5
    BOD520苯胺类0.5
    COD80硝基苯类2.0
    氨氮15三氯甲烷0.3
    甲苯0.1二氯甲烷0.2
    氯苯0.21,2-二氯乙烷0.3
    0.1
    下载: 导出CSV

    表  2  污水种类特征以及处理工艺

    Table  2.   Wastewater types and characteristics and treatment processes

    污水种类水质特征水量/(万m3处理工艺
    爆炸大坑污水强酸、高COD、高氨氮2.1生物处理工艺
    事故厂区面积污水强酸、腐蚀性、高浓度有机污染物0.1石灰中和、收集转运
    重污染河水苯胺等高浓度有机污染物8.5芬顿氧化+活性炭吸附+生物处理工艺
    轻污染河水COD较高3.7污水处理厂
    微污染河水低浓度有机污染物14.3活性炭吸附
    下载: 导出CSV

    表  3  污染物削减量汇总

    Table  3.   Summary of pollutant reductions

    处理设施处理对象污水处理量/m3污染物削减量/kg
    COD氨氮苯胺类
    芬顿氧化预处理重污染河水116 26064 185.81 898.17 123.7
    强化生物处理爆炸大坑废水20 58033 319.6209.46.1
    陈家港污水厂综合污水340 13368 564.56 763.2898.6
    合计166 069.98 870.78 028.4
    下载: 导出CSV
  • [1] 邓小英.突发环境事件应急监测问题分析及对策初探[J]. 节能与环保,2019(3):22-23. doi: 10.3969/j.issn.1009-539X.2019.03.009

    Deng X Y. Analysis on emergency monitoring of emergency environmental events and preliminary study on the countermeasures[J]. Energy Conservation and Environmental Protection,2019(3):22-23. doi: 10.3969/j.issn.1009-539X.2019.03.009
    [2] 刘丽, 徐亚博, 刘振翼.化工事故多米诺效应定量风险评价研究[J]. 中国安全生产科学技术,2008,4(2):49-52.

    LIU L, XU Y B, LIU Z Y. Progress on quantitatice risk assessmant of domino effect in chemical accidents[J]. Journal of Safety Science and Technology,2008,4(2):49-52.
    [3] 王冠颖, 刘晓玲, 魏健, 等.响水化工园区爆炸事故污水应急预处理工艺筛选[J]. 环境科学学报,2020,40(12):4318-4324.

    WANG G Y, LIU X L, WEI J, et al. Screening on emergency pretreatment process for accidental wastewater of explosion in Xiangshui chemical industry park[J]. Acta Scientiae Circumstantiae,2020,40(12):4318-4324.
    [4] 宋永会, 韩璐, 温丽丽, 等.突发环境事件风险源识别与监控技术创新进展: (Ⅱ)环境风险源监控技术与案例[J]. 环境工程技术学报,2015,5(5):353-360. doi: 10.3969/j.issn.1674-991X.2015.05.056

    SONG Y H, HAN L, WEN L L, et al. Technological innovation progress of risk sources identification and monitoring of sudden environmental pollution accidents: (Ⅱ) risk sources monitoring technology and case study[J]. Journal of Environmental Engineering Technology,2015,5(5):353-360. doi: 10.3969/j.issn.1674-991X.2015.05.056
    [5] 杜红岩, 王延平, 卢均臣.2012年国内外石油化工行业事故统计分析[J]. 中国安全生产科学技术,2013,9(6):184-188.

    DU H Y, WANG Y P, LU J C. Statistical analysis on petroleum and chemical accidents at home and abroad during the period of 2012[J]. Journal of Safety Science and Technology,2013,9(6):184-188.
    [6] 宋永会, 袁鹏, 彭剑峰, 等.突发环境事件风险源识别与监控技术创新进展: (Ⅰ)环境风险源识别技术与应用[J]. 环境工程技术学报,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055

    SONG Y H, YUAN P, PENG J F, et al. Technological innovation progress of risk sources identification and monitoring of sudden environmental pollution accidents: (Ⅰ) risk sources identification technologies and applications[J]. Journal of Environmental Engineering Technology,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055
    [7] 于靖靖, 梁田, 罗会龙, 等.近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究,2022,35(5):1110-1119.
    [8] 王小兵, 刘洁.化工事故中的工程伦理责任分析—以盛华化工爆炸事故为例[J]. 科技经济导刊,2019,000(007):.169-170.
    [9] 崔蔚.江苏响水“3·21”特别重大爆炸事故调查与启示[J]. 消防科学与技术,2020,39(4):570-575. doi: 10.3969/j.issn.1009-0029.2020.04.039

    CUI W. Investigation and inspiration of 3.21 particularly serious explosion in Xiangshui Jiangsu[J]. Fire Science and Technology,2020,39(4):570-575. doi: 10.3969/j.issn.1009-0029.2020.04.039
    [10] 丁斌.从“3.21”特别重大事故谈危险废物的安全管理[J]. 安徽化工,2020,46(4):106-108. doi: 10.3969/j.issn.1008-553X.2020.04.031

    DING B. Discussion on safety management of hazardous waste from “3.21” special serious accident[J]. Anhui Chemical Industry,2020,46(4):106-108. doi: 10.3969/j.issn.1008-553X.2020.04.031
    [11] 陈昀, 王方园, 洪华嫦, 等.环境样品中苯胺类化合物检测方法的研究进展[J]. 广州化工,2012,40(1):12-15. doi: 10.3969/j.issn.1001-9677.2012.01.006

    CHEN Y, WANG F Y, HONG H C, et al. Research progrers of determination method of amine in environmental samples[J]. Guangzhou Chemical Industry,2012,40(1):12-15. doi: 10.3969/j.issn.1001-9677.2012.01.006
    [12] 李利荣, 吴宇峰, 杨家凤, 等.固相萃取-气相色谱法测定水中硝基苯类有机污染物的方法研究[J]. 中国环境监测,2007,23(1):11-15. doi: 10.3969/j.issn.1002-6002.2007.01.004

    LI L R, WU Y F, YANG J F, et al. Analytical method for aromatic nitrocompounds in water by SPE GC-ECD[J]. Environmental Monitoring in China,2007,23(1):11-15. doi: 10.3969/j.issn.1002-6002.2007.01.004
    [13] 帅放文, 王向峰, 雷玉萍, 等.四种苯甲酸检测方法比较研究[J]. 中国食品添加剂,2016(4):161-165. doi: 10.3969/j.issn.1006-2513.2016.04.018

    SHUAI F W, WANG X F, LEI Y P, et al. Comparative study on four kinds of detection methods of benzoic acid[J]. China Food Additives,2016(4):161-165. doi: 10.3969/j.issn.1006-2513.2016.04.018
    [14] 周丽屏, 邓燕君, 刘移民.1, 2-二氯乙烷接触生物监测指标及检测方法研究[J]. 中华预防医学杂志,2016,50(2):179-183. doi: 10.3760/cma.j.issn.0253-9624.2016.02.015
    [15] 薛洪滨, 张雪洁, 刘伟伟.顶空气相色谱法测定饮用水中的三氯甲烷及四氯化碳[J]. 河南预防医学杂志,2021,32(1):46-48.

    XUE H B, ZHANG X J, LIU W W. Determination of chloroform and tetrachloromethane in drinking water by headspace gas chromatography[J]. Henan Journal of Preventive Medicine,2021,32(1):46-48.
    [16] PALTA S, SAROA R, PALTA A. Overview of the coagulation system[J]. Indian Journal of Anaesthesia,2014,58(5):515-523. doi: 10.4103/0019-5049.144643
    [17] GUR-REZNIK S, KATZ I, DOSORETZ C G. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research,2008,42(6/7):1595-1605.
    [18] 何锦垚, 魏健, 张嘉雯, 等.臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报,2019,13(10):2385-2392. doi: 10.12030/j.cjee.201902043

    HE J Y, WEI J, ZHANG J W, et al. Advanced treatment of antibiotic pharmaceutical wastewater by catalytic ozonation combined with BAF process[J]. Chinese Journal of Environmental Engineering,2019,13(10):2385-2392. doi: 10.12030/j.cjee.201902043
    [19] 魏健, 范冬琪, 宋永会, 等.Fenton氧化/混凝沉淀协同处理腈纶聚合废水[J]. 环境工程学报,2015,9(1):14-18. doi: 10.12030/j.cjee.20150103

    WEI J, FAN D Q, SONG Y H, et al. Treatment of acrylic fiber polymerization wastewater by Fenton oxidation cooperated with coagulation[J]. Chinese Journal of Environmental Engineering,2015,9(1):14-18. doi: 10.12030/j.cjee.20150103
    [20] ZHAO X L, LI Y Y, LU J H, et al. UV/H2O2 oxidation of chloronitrobenzenes in waters revisited: Hydroxyl radical induced self-nitration[J]. Journal of Photochemistry and Photobiology A:Chemistry,2021,410:113162. doi: 10.1016/j.jphotochem.2021.113162
    [21] ZHONG H Y, LIU X, TIAN Y, et al. Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation[J]. Science of the Total Environment,2021,776:145909. doi: 10.1016/j.scitotenv.2021.145909
    [22] MOHAMMED M, MEKALA L P, CHINTALAPATI S, et al. New insights into aniline toxicity: Aniline exposure triggers envelope stress and extracellular polymeric substance formation in Rubrivivax benzoatilyticus JA2[J]. Journal of Hazardous Materials,2020,385:121571. doi: 10.1016/j.jhazmat.2019.121571
    [23] DVOŘÁK L, LEDERER T, JIRKU V, et al. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor[J]. Process Biochemistry,2014,49(1):102-109. doi: 10.1016/j.procbio.2013.10.011
    [24] XUE G, ZHENG M H, QIAN Y J, et al. Comparison of aniline removal by UV/CaO2 and UV/H2O2: degradation kinetics and mechanism[J]. Chemosphere,2020,255:126983. doi: 10.1016/j.chemosphere.2020.126983
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2022-06-14

目录

    /

    返回文章
    返回