Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region
-
摘要:
区域氮、磷、镉、砷输移变化是影响农业生产、导致农田面源污染的主要因素。基于土壤表观平衡模型,以珠三角流域佛山市农业科学研究所试验农田为典型研究区域,构建农田小区尺度土壤表观氮、磷、镉、砷平衡模型,对4种元素在土壤中输移结构和平衡进行分析。结果表明:研究区域4种元素的主要输入途径是施肥,而输出的主要形式各有不同。其中,氮、磷主要输出形式是作物富集输出,输出占比分别为57.5%和39.0%;镉、砷主要输出形式分别是地表径流和作物富集输出,输出占比分别为66.7%和10.7%。研究区域4种元素均出现了不同程度土壤富集现象,农田小区尺度氮、磷平衡处于盈余状态,而镉、砷平衡处于亏损状态,4种元素的平衡强度分别为37.40、8.88、−1.35和−20.50 kg/(hm2·a),仅氮、磷未超过当地土壤环境安全阈值。分析试验农田中5类蔬菜各部位镉、砷富集情况发现,砷的富集系数均达到70.0%以上,而镉的富集只在辣椒叶中较为突出,富集系数达到57.5%。研究显示,应重视肥料输入的有效利用,加强农田灌溉水、农作物和地表径流中重金属的监测,以保障区域粮食安全和水环境安全。
Abstract:The transport of nitrogen, phosphorus, cadmium and arsenic is the main factor affecting agricultural production as well as a significant non-point source of pollution of farmland. Taking the experimental farmland of the Foshan Institute of Agricultural Science and Technology (FIAST) in the Pearl River Delta as a typical research area, and based on the soil apparent balance model, a soil apparent balance model of nitrogen, phosphorus, cadmium and arsenic was constructed at the farmland plot scale, to analyze the transport structure and balance of nitrogen, phosphorus, cadmium and arsenic in the soil. The results showed that fertilization was the main input of the four elements in the study area, but the main outputs were different. The main output of nitrogen and phosphorus was crop enrichment, accounting for 57.5% and 39.0%, respectively, whilst the main outputs of cadmium and arsenic were surface runoff and crop enrichment, accounting for 66.7% and 10.7%, respectively. The enrichment was observed for all four elements in the study area to different degrees. On the plot scale, the balance of nitrogen and phosphorus was in surplus, while cadmium and arsenic were in deficit, with their intensity being 37.40, 8.88, −1.35 and −20.50 kg/(hm2·a), respectively. Nitrogen and phosphorus were within the local soil environmental safety thresholds. The analysis of cadmium and arsenic enrichment in five types of vegetables showed that the enrichment coefficient of arsenic was greater than 70.0% in all the types of vegetables, while the enrichment of cadmium was only found in pepper leaves, with a coefficient of 57.5%. Therefore, more attention should be paid to the effective utilization of fertilizer input and the monitoring of heavy metals in irrigation water, crops and surface runoff to ensure regional food security and water quality.
-
表 1 农田土壤表观氮、磷、镉、砷输移结构信息
Table 1. Information on the apparent transport structure of nitrogen, phosphorus, cadmium and arsenic in farmland soil
项目 浓度/(mg/kg) 年输入或输出量/(kg/a) 氮 磷 镉 砷 氮 磷 镉 砷 输入 肥料 复合肥 151) 151) 0.80 4.70 7416 3257 0.040 0 0.244 钾肥 0 0 0.05 4.20 0 0 0.000 8 0.063 尿素 481) 0 0 0 4406 0 0 0 有机肥 3.901) 2.901) 2.40 5.90 195 85 0.012 0 0.040 小计 12017 3342 0.053 0.347 灌溉水 1.372) 0.082) 0.0042) 0.0472) 10 0.58 0.029 0.340 大气沉降 741 9.50 0.014 0.034 输出 作物富集 稻秆 4 600 1 073 0.32 4.30 506 118 0.035 0.473 稻米 6 048 1 605 0.23 0.19 652 173 0.025 0.020 蔬菜 1 626 363 0.83 2.55 381 85 0.058 0.179 小计 1539 376 0.118 0.672 地表径流 稻田 2.16 1.37 0.000 4 0.001 334 212 0.062 0.155 旱地 3.50 1.36 0.003 0 0.005 287 111 0.245 0.410 小计 621 323 0.307 0.565 土壤富集 0~20 cm 1 836 1 045 0.14 0.60 182 103.10 0.014 1.700 20~40 cm 1 720 864 0.11 0.65 170 85.30 0.011 1.680 40~60 cm 1 684 766 0.10 0.68 166 75.70 0.010 1.670 小计 518 264.10 0.035 5.050 平衡 10 090 2 389 −0.364 −5.566 1)单位为%;2)单位为mg/L。 表 2 农田小区尺度土壤表观氮、磷、镉、砷平衡强度
Table 2. Soil apparent balance intensities of N, P, Cd and As at farmland plot scale
kg/(hm2·a) 项目 氮强度 磷强度 镉强度 砷强度 输入 肥料 44.50 12.40 0.20 1.38 灌溉水 0.04 0.002 0.11 1.26 大气沉降 2.74 0.04 0.05 0.13 合计 47.30 12.40 0.36 2.77 输出 作物富集 5.70 1.39 0.44 2.49 地表径流 2.30 1.19 1.14 2.09 土壤富集 1.92 0.98 0.13 18.70 合计 9.92 3.56 1.71 23.30 平衡 37.40 8.88 −1.35 −20.50 -
[1] 朱永官, 陈保冬, 林爱军, 等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报,2005,25(12):1575-1579.ZHU Y G, CHEN B D, LIN A J, et al. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae,2005,25(12):1575-1579. [2] 徐志青, 刘雪瑜, 肖书虎, 等.珠江三角洲地区水环境承载力评价及障碍因素研究[J]. 环境工程技术学报,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007XU Z Q, LIU X Y, XIAO S H, et al. Evaluation and obstacle factors study of water environmental carrying capacity in the Pearl River Delta[J]. Journal of Environmental Engineering Technology,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007 [3] 纪冬丽, 孟凡生, 薛浩, 等.国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报,2016,6(1):90-99.JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology,2016,6(1):90-99. [4] HONG B, SWANEY D P, HOWARTH R W. Estimating net anthropogenic nitrogen inputs to US watersheds: comparison of methodologies[J]. Environmental Science & Technology,2013,47(10):5199-5207. [5] 徐一芃, 黄益宗, 张利田, 等.镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报,2020,14(10):2882-2894.XU Y P, HUANG Y Z, ZHANG L T, et al. Bibliometric analysis of remediation techniques for cadmium and arsenic contaminated soil[J]. Chinese Journal of Environmental Engineering,2020,14(10):2882-2894. [6] 梁新强, 顾欣欣, 李华, 等.土壤氮磷平衡在评价区域氮磷损失中的应用[J]. 环境科学与技术,2007,30(3):50-51.LIANG X Q, GU X X, LI H, et al. N and P balances in soil: a tool for assessing agricultural N and P losses in regional scale[J]. Environmental Science & Technology,2007,30(3):50-51. [7] WATSON C A, ATKINSON D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm systems: a comparison of three methodological approaches[J]. Nutrient Cycling in Agroecosystems,1999,53:259-267. doi: 10.1023/A:1009793120577 [8] BOUWMAN A F, van DRECHT G, van der HOEK K W. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030[J]. Pedosphere,2005,15(2):137-155. [9] Organization for Economic Cooperation and Development (OECD). Environmental indicators for agriculture: volume 3. methods and results[R]. Paris: Organization for Economic Cooperation and Development, 2001. [10] Organization for Economic Cooperation and Development (OECD). OECD national soil surface nitrogen balances: explanatory notes[R]. Paris: Organization for Economic Cooperation and Development, 2001. [11] PARRIS K. Agricultural nutrient balances as agri-environmental indicators: an OECD perspective[J]. Environmental Pollution,1998,102(1):219-225. doi: 10.1016/S0269-7491(98)80036-5 [12] PRASAD V K, BADARINATH K V S, YONEMURA S, et al. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001)[J]. Journal of Environmental Management,2004,73(3):209-218. doi: 10.1016/j.jenvman.2004.06.013 [13] 杨阳, 何飞飞, 邓纲, 等.氮肥对工业大麻产量和土壤表观氮素平衡的影响[J]. 云南农业大学学报(自然科学),2019,34(5):833-837.YANG Y, HE F F, DENG G, et al. Effect of nitrogen fertilization on the yield and apparent soil nitrogen balance of hemp (Cannabis sativa L. )[J]. Journal of Yunnan Agricultural University (Natural Science),2019,34(5):833-837. [14] 何庆利. 不同种植体系的土壤表观磷平衡及磷的有效性评价[D]. 重庆: 西南大学, 2020. [15] 李金城, 杜展鹏, 严长安, 等.高原山地城市农田氮、磷表观平衡演变特征: 以昆明市为例[J]. 环境科学学报,2018,38(12):4823-4830.LI J C, DU Z P, YAN C A, et al. Evolution of cropland nitrogen and phosphorus apparent balance in plateau region: a case study of Kunming City[J]. Acta Scientiae Circumstantiae,2018,38(12):4823-4830. [16] 赵晓琳. 胡家山小流域农田土壤氮磷收支研究[D]. 武汉: 华中农业大学, 2015. [17] ZHANG H, SHAN B Q. Historical distribution and partitioning of phosphorus in sediments in an agricultural watershed in the Yangtze-Huaihe region, China[J]. Environmental Science & Technology,2008,42(7):2328-2333. [18] MAO Y P, ZHANG H, TANG W Z, et al. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008-2016)[J]. Journal of Environmental Management,2021,282:111952. doi: 10.1016/j.jenvman.2021.111952 [19] 王瑶瑶, 郝毅, 张洪, 等.珠三角地区大米中的镉砷污染现状及治理措施[J]. 中国农学通报,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016WANG Y Y, HAO Y, ZHANG H, et al. Cadmium and arsenic pollution in rice in the Pearl River Delta and the countermeasures[J]. Chinese Agricultural Science Bulletin,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016 [20] 张永利. 珠三角农田土壤环境镉砷钝化效果研究[D]. 兰州: 兰州大学, 2019. [21] 马瑾, 潘根兴, 万洪富, 等.珠江三角洲典型区域土壤重金属污染探查研究[J]. 土壤通报,2004,35(5):636-638.MA J, PAN G X, WAN H F, et al. Investigation on heavy metal pollution in a typical area of the Pearl River Delta[J]. Chinese Journal of Soil Science,2004,35(5):636-638. [22] 姜国辉, 周雪梅, 李玉清, 等.不同浓度镉水灌溉对土壤及水稻品质的影响[J]. 水土保持学报,2012,26(5):264-267.JIANG G H, ZHOU X M, LI Y Q, et al. Influence from irrigation of different cadmium water density on soil and rice quality[J]. Journal of Soil and Water Conservation,2012,26(5):264-267. [23] 李勇, 赵志忠, 周永章.珠江三角洲肝癌高发区人发重金属元素来源及其影响因子分析[J]. 广东微量元素科学,2013,20(2):1-10.LI Y, ZHAO Z Z, ZHOU Y Z. Identification of heavy metals sources in scalp hair and associated influence factors in liver cancer's high incidence area in Pearl River Delta, China[J]. Guangdong Trace Elements Science,2013,20(2):1-10. [24] 李东瑶. 珠江三角洲不同环境介质中重金属富集特征及其来源[D]. 北京: 中国地质大学(北京), 2021. [25] 吴丹. 佛山市农业表层土壤重金属含量空间分布特征及其环境磁学响应研究[D]. 北京: 中国科学院大学, 2014. [26] 谷倩, 张琢, 张丽, 等.砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报,2021,11(4):734-739.GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology,2021,11(4):734-739. [27] 国家环境保护局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国标准出版社, 2004. . [28] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [29] 刘钦普.中国化肥施用强度及环境安全阈值时空变化[J]. 农业工程学报,2017,33(6):214-221.LIU Q P. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(6):214-221. [30] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. [31] 陈玉梅, 周根娣, 胡洁, 等.土壤重金属复合污染对茄果类蔬菜的影响研究[J]. 杭州师范大学学报(自然科学版),2016,15(5):495-501.CHEN Y M, ZHOU G D, HU J, et al. Influence of combined heavy metal pollution on solanaceous vegetables[J]. Journal of Hangzhou Normal University (Natural Science Edition),2016,15(5):495-501. [32] ZHAO L P, MA Y B, LIANG G Q, et al. Phosphorus efficacy in four Chinese long-term experiments with different soil properties and climate characteristics[J]. Communications in Soil Science and Plant Analysis,2009,40(19/20):3121-3138. [33] LAMBRECHTS T, de BRAEKELEER C, FAUTSCH V, et al. Can vegetative filter strips efficiently trap trace elements during water erosion events: a flume experiment with contaminated sediments[J]. Ecological Engineering,2014,68:60-64. doi: 10.1016/j.ecoleng.2014.03.092 [34] 袁鹏, 刘瑞霞, 俞洁, 等.《浙江省河流生态缓冲带划定与生态修复技术指南(试行)》解读[J]. 环境工程技术学报,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003YUAN P, LIU R X, YU J, et al. Interpretation of Technical Guidelines for Delineation and Ecological Restoration of Riparian Buffers of Rivers in Zhejiang Province (Trial)[J]. Journal of Environmental Engineering Technology,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003 [35] GENE S M, HOEKSTRA P F, HANNAM C, et al. The role of vegetated buffers in agriculture and their regulation across Canada and the United States[J]. Journal of Environmental Management,2019,243:12-21. [36] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature,2001,409(6820):579. doi: 10.1038/35054664 [37] YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil,2004,259(1/2):181-189. doi: 10.1023/B:PLSO.0000020956.24027.f2 [38] CHEN B, MA X X, LIU G Q, et al. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape[J]. Environmental Science and Pollution Research International,2015,22(22):17625-17635. doi: 10.1007/s11356-015-4933-5 [39] 谭可夫, 涂鹏飞, 杨洋, 等.烟草—红叶甜菜轮作对镉污染农田的修复潜力试验[J]. 环境工程技术学报,2020,10(3):440-448. doi: 10.12153/j.issn.1674-991X.20190167TAN K F, TU P F, YANG Y, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and swiss chard rotation systems[J]. Journal of Environmental Engineering Technology,2020,10(3):440-448. ◇ doi: 10.12153/j.issn.1674-991X.20190167