留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策

薛雪 毛宇鹏 张洪

薛雪,毛宇鹏,张洪.珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策[J].环境工程技术学报,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391
引用本文: 薛雪,毛宇鹏,张洪.珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策[J].环境工程技术学报,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391
XUE X,MAO Y P,ZHANG H.Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391
Citation: XUE X,MAO Y P,ZHANG H.Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391

珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策

doi: 10.12153/j.issn.1674-991X.20220391
基金项目: 国家重点研发计划项目(2017YFD0801301)
详细信息
    作者简介:

    薛雪(1997—),女,硕士研究生,研究方向为沉积物-水界面污染物扩散通量,xuexue_st@rcees.ac.cn

    通讯作者:

    张洪(1980—),男,研究员,博士,研究方向为流域物质循环与调控,hongzhang@rcees.ac.cn

  • 中图分类号: X82, X52

Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region

  • 摘要:

    区域氮、磷、镉、砷输移变化是影响农业生产、导致农田面源污染的主要因素。基于土壤表观平衡模型,以珠三角流域佛山市农业科学研究所试验农田为典型研究区域,构建农田小区尺度土壤表观氮、磷、镉、砷平衡模型,对4种元素在土壤中输移结构和平衡进行分析。结果表明:研究区域4种元素的主要输入途径是施肥,而输出的主要形式各有不同。其中,氮、磷主要输出形式是作物富集输出,输出占比分别为57.5%和39.0%;镉、砷主要输出形式分别是地表径流和作物富集输出,输出占比分别为66.7%和10.7%。研究区域4种元素均出现了不同程度土壤富集现象,农田小区尺度氮、磷平衡处于盈余状态,而镉、砷平衡处于亏损状态,4种元素的平衡强度分别为37.40、8.88、−1.35和−20.50 kg/(hm2·a),仅氮、磷未超过当地土壤环境安全阈值。分析试验农田中5类蔬菜各部位镉、砷富集情况发现,砷的富集系数均达到70.0%以上,而镉的富集只在辣椒叶中较为突出,富集系数达到57.5%。研究显示,应重视肥料输入的有效利用,加强农田灌溉水、农作物和地表径流中重金属的监测,以保障区域粮食安全和水环境安全。

     

  • 图  1  研究区分区及采样点设置

    Figure  1.  Partitioning and sampling point setting of the study area

    图  2  农田土壤表观氮、磷、镉、砷平衡计算框架

    Figure  2.  Framework for calculating the balance of apparent nitrogen, phosphorus, cadmium and arsenic in farmland soil

    图  3  5类蔬菜不同部位对镉、砷的富集系数

    注:白色填充为砷;灰色填充为镉。

    Figure  3.  Enrichment coefficients of cadmium and arsenic in different parts of five kinds of vegetables

    表  1  农田土壤表观氮、磷、镉、砷输移结构信息

    Table  1.   Information on the apparent transport structure of nitrogen, phosphorus, cadmium and arsenic in farmland soil

    项目浓度/(mg/kg)年输入或输出量/(kg/a)
    输入肥料复合肥151)151)0.804.70741632570.040 00.244
    钾肥000.054.20000.000 80.063
    尿素481)0004406000
    有机肥3.901)2.901)2.405.90195850.012 00.040
    小计1201733420.0530.347
    灌溉水1.372)0.082)0.0042)0.0472)100.580.0290.340
    大气沉降7419.500.0140.034
    输出作物富集稻秆4 6001 0730.324.305061180.0350.473
    稻米6 0481 6050.230.196521730.0250.020
    蔬菜1 6263630.832.55381850.0580.179
    小计15393760.1180.672
    地表径流稻田2.161.370.000 40.0013342120.0620.155
    旱地3.501.360.003 00.0052871110.2450.410
    小计6213230.3070.565
    土壤富集0~20 cm1 8361 0450.140.60182103.100.0141.700
    20~40 cm1 7208640.110.6517085.300.0111.680
    40~60 cm1 6847660.100.6816675.700.0101.670
    小计518264.100.0355.050
    平衡10 0902 389−0.364−5.566
      1)单位为%;2)单位为mg/L。
    下载: 导出CSV

    表  2  农田小区尺度土壤表观氮、磷、镉、砷平衡强度

    Table  2.   Soil apparent balance intensities of N, P, Cd and As at farmland plot scale kg/(hm2·a) 

    项目氮强度磷强度镉强度砷强度
    输入肥料44.5012.400.201.38
    灌溉水0.040.0020.111.26
    大气沉降2.740.040.050.13
    合计47.3012.400.362.77
    输出作物富集5.701.390.442.49
    地表径流2.301.191.142.09
    土壤富集1.920.980.1318.70
    合计9.923.561.7123.30
    平衡37.408.88−1.35−20.50
    下载: 导出CSV
  • [1] 朱永官, 陈保冬, 林爱军, 等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报,2005,25(12):1575-1579.

    ZHU Y G, CHEN B D, LIN A J, et al. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae,2005,25(12):1575-1579.
    [2] 徐志青, 刘雪瑜, 肖书虎, 等.珠江三角洲地区水环境承载力评价及障碍因素研究[J]. 环境工程技术学报,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007

    XU Z Q, LIU X Y, XIAO S H, et al. Evaluation and obstacle factors study of water environmental carrying capacity in the Pearl River Delta[J]. Journal of Environmental Engineering Technology,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007
    [3] 纪冬丽, 孟凡生, 薛浩, 等.国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报,2016,6(1):90-99.

    JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology,2016,6(1):90-99.
    [4] HONG B, SWANEY D P, HOWARTH R W. Estimating net anthropogenic nitrogen inputs to US watersheds: comparison of methodologies[J]. Environmental Science & Technology,2013,47(10):5199-5207.
    [5] 徐一芃, 黄益宗, 张利田, 等.镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报,2020,14(10):2882-2894.

    XU Y P, HUANG Y Z, ZHANG L T, et al. Bibliometric analysis of remediation techniques for cadmium and arsenic contaminated soil[J]. Chinese Journal of Environmental Engineering,2020,14(10):2882-2894.
    [6] 梁新强, 顾欣欣, 李华, 等.土壤氮磷平衡在评价区域氮磷损失中的应用[J]. 环境科学与技术,2007,30(3):50-51.

    LIANG X Q, GU X X, LI H, et al. N and P balances in soil: a tool for assessing agricultural N and P losses in regional scale[J]. Environmental Science & Technology,2007,30(3):50-51.
    [7] WATSON C A, ATKINSON D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm systems: a comparison of three methodological approaches[J]. Nutrient Cycling in Agroecosystems,1999,53:259-267. doi: 10.1023/A:1009793120577
    [8] BOUWMAN A F, van DRECHT G, van der HOEK K W. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030[J]. Pedosphere,2005,15(2):137-155.
    [9] Organization for Economic Cooperation and Development (OECD). Environmental indicators for agriculture: volume 3. methods and results[R]. Paris: Organization for Economic Cooperation and Development, 2001.
    [10] Organization for Economic Cooperation and Development (OECD). OECD national soil surface nitrogen balances: explanatory notes[R]. Paris: Organization for Economic Cooperation and Development, 2001.
    [11] PARRIS K. Agricultural nutrient balances as agri-environmental indicators: an OECD perspective[J]. Environmental Pollution,1998,102(1):219-225. doi: 10.1016/S0269-7491(98)80036-5
    [12] PRASAD V K, BADARINATH K V S, YONEMURA S, et al. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001)[J]. Journal of Environmental Management,2004,73(3):209-218. doi: 10.1016/j.jenvman.2004.06.013
    [13] 杨阳, 何飞飞, 邓纲, 等.氮肥对工业大麻产量和土壤表观氮素平衡的影响[J]. 云南农业大学学报(自然科学),2019,34(5):833-837.

    YANG Y, HE F F, DENG G, et al. Effect of nitrogen fertilization on the yield and apparent soil nitrogen balance of hemp (Cannabis sativa L. )[J]. Journal of Yunnan Agricultural University (Natural Science),2019,34(5):833-837.
    [14] 何庆利. 不同种植体系的土壤表观磷平衡及磷的有效性评价[D]. 重庆: 西南大学, 2020.
    [15] 李金城, 杜展鹏, 严长安, 等.高原山地城市农田氮、磷表观平衡演变特征: 以昆明市为例[J]. 环境科学学报,2018,38(12):4823-4830.

    LI J C, DU Z P, YAN C A, et al. Evolution of cropland nitrogen and phosphorus apparent balance in plateau region: a case study of Kunming City[J]. Acta Scientiae Circumstantiae,2018,38(12):4823-4830.
    [16] 赵晓琳. 胡家山小流域农田土壤氮磷收支研究[D]. 武汉: 华中农业大学, 2015.
    [17] ZHANG H, SHAN B Q. Historical distribution and partitioning of phosphorus in sediments in an agricultural watershed in the Yangtze-Huaihe region, China[J]. Environmental Science & Technology,2008,42(7):2328-2333.
    [18] MAO Y P, ZHANG H, TANG W Z, et al. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008-2016)[J]. Journal of Environmental Management,2021,282:111952. doi: 10.1016/j.jenvman.2021.111952
    [19] 王瑶瑶, 郝毅, 张洪, 等.珠三角地区大米中的镉砷污染现状及治理措施[J]. 中国农学通报,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016

    WANG Y Y, HAO Y, ZHANG H, et al. Cadmium and arsenic pollution in rice in the Pearl River Delta and the countermeasures[J]. Chinese Agricultural Science Bulletin,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016
    [20] 张永利. 珠三角农田土壤环境镉砷钝化效果研究[D]. 兰州: 兰州大学, 2019.
    [21] 马瑾, 潘根兴, 万洪富, 等.珠江三角洲典型区域土壤重金属污染探查研究[J]. 土壤通报,2004,35(5):636-638.

    MA J, PAN G X, WAN H F, et al. Investigation on heavy metal pollution in a typical area of the Pearl River Delta[J]. Chinese Journal of Soil Science,2004,35(5):636-638.
    [22] 姜国辉, 周雪梅, 李玉清, 等.不同浓度镉水灌溉对土壤及水稻品质的影响[J]. 水土保持学报,2012,26(5):264-267.

    JIANG G H, ZHOU X M, LI Y Q, et al. Influence from irrigation of different cadmium water density on soil and rice quality[J]. Journal of Soil and Water Conservation,2012,26(5):264-267.
    [23] 李勇, 赵志忠, 周永章.珠江三角洲肝癌高发区人发重金属元素来源及其影响因子分析[J]. 广东微量元素科学,2013,20(2):1-10.

    LI Y, ZHAO Z Z, ZHOU Y Z. Identification of heavy metals sources in scalp hair and associated influence factors in liver cancer's high incidence area in Pearl River Delta, China[J]. Guangdong Trace Elements Science,2013,20(2):1-10.
    [24] 李东瑶. 珠江三角洲不同环境介质中重金属富集特征及其来源[D]. 北京: 中国地质大学(北京), 2021.
    [25] 吴丹. 佛山市农业表层土壤重金属含量空间分布特征及其环境磁学响应研究[D]. 北京: 中国科学院大学, 2014.
    [26] 谷倩, 张琢, 张丽, 等.砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报,2021,11(4):734-739.

    GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology,2021,11(4):734-739.
    [27] 国家环境保护局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国标准出版社, 2004. .
    [28] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [29] 刘钦普.中国化肥施用强度及环境安全阈值时空变化[J]. 农业工程学报,2017,33(6):214-221.

    LIU Q P. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(6):214-221.
    [30] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [31] 陈玉梅, 周根娣, 胡洁, 等.土壤重金属复合污染对茄果类蔬菜的影响研究[J]. 杭州师范大学学报(自然科学版),2016,15(5):495-501.

    CHEN Y M, ZHOU G D, HU J, et al. Influence of combined heavy metal pollution on solanaceous vegetables[J]. Journal of Hangzhou Normal University (Natural Science Edition),2016,15(5):495-501.
    [32] ZHAO L P, MA Y B, LIANG G Q, et al. Phosphorus efficacy in four Chinese long-term experiments with different soil properties and climate characteristics[J]. Communications in Soil Science and Plant Analysis,2009,40(19/20):3121-3138.
    [33] LAMBRECHTS T, de BRAEKELEER C, FAUTSCH V, et al. Can vegetative filter strips efficiently trap trace elements during water erosion events: a flume experiment with contaminated sediments[J]. Ecological Engineering,2014,68:60-64. doi: 10.1016/j.ecoleng.2014.03.092
    [34] 袁鹏, 刘瑞霞, 俞洁, 等.《浙江省河流生态缓冲带划定与生态修复技术指南(试行)》解读[J]. 环境工程技术学报,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003

    YUAN P, LIU R X, YU J, et al. Interpretation of Technical Guidelines for Delineation and Ecological Restoration of Riparian Buffers of Rivers in Zhejiang Province (Trial)[J]. Journal of Environmental Engineering Technology,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003
    [35] GENE S M, HOEKSTRA P F, HANNAM C, et al. The role of vegetated buffers in agriculture and their regulation across Canada and the United States[J]. Journal of Environmental Management,2019,243:12-21.
    [36] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature,2001,409(6820):579. doi: 10.1038/35054664
    [37] YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil,2004,259(1/2):181-189. doi: 10.1023/B:PLSO.0000020956.24027.f2
    [38] CHEN B, MA X X, LIU G Q, et al. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape[J]. Environmental Science and Pollution Research International,2015,22(22):17625-17635. doi: 10.1007/s11356-015-4933-5
    [39] 谭可夫, 涂鹏飞, 杨洋, 等.烟草—红叶甜菜轮作对镉污染农田的修复潜力试验[J]. 环境工程技术学报,2020,10(3):440-448. doi: 10.12153/j.issn.1674-991X.20190167

    TAN K F, TU P F, YANG Y, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and swiss chard rotation systems[J]. Journal of Environmental Engineering Technology,2020,10(3):440-448. ◇ doi: 10.12153/j.issn.1674-991X.20190167
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  150
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26

目录

    /

    返回文章
    返回