Variation characteristics and source analysis of dissolved organic matter along the river into Baiyangdian Lake
-
摘要:
采用紫外-可见吸收光谱、三维荧光光谱,结合平行因子分析、主成分分析等方法,分析了白洋淀3条入淀河流(府河、孝义河、白沟引河)中发色团溶解有机物(CDOM)的光谱特征,阐释了CDOM组成、来源及对水质的影响机制。结果发现:河流CDOM平均浓度顺序为府河>孝义河>白沟引河,其中,府河CDOM的芳香性与分子量高于其他河流,白沟引河腐殖化程度高于其他河流,孝义河CDOM中内源性物质占比高于其他河流;3条河流均检出类腐殖质组分C1、C2、C3和类蛋白质组分C4,其中C1、C2、C3来源相近,且与C4异源;3条河流各组分最大荧光强度和总荧光强度的沿程变化表明,府河CDOM为点源、面源混合来源,孝义河CDOM以点源输入为主,白沟引河CDOM来自水源本身。
-
关键词:
- 白洋淀 /
- 入淀河流 /
- 发色团溶解有机物(CDOM) /
- 紫外-可见吸收光谱 /
- 三维荧光光谱 /
- 平行因子分析(PARAFAC)
Abstract:The spectral characteristics of chromophoric dissolved organic matter (CDOM) in three inflow rivers of Baiyangdian Lake (Fu River, Xiaoyi River and Baigouyin River) were analyzed by UV-vis absorption spectroscopy, three-dimensional fluorescence spectroscopy, parallel factor analysis and principal component analysis, and the composition, sources and the influence mechanism of CDOM on water quality were explained. The results showed that the order of CDOM average concentration was Fu River>Xiaoyi River>Baigouyin River. The aromaticity and molecular weight of CDOM in the Fu River were higher than those in other rivers, the degree of humification in the Baigouyin River was higher than those in other rivers, and the proportion of endogenous substances in CDOM in the Xiaoyi River was higher than those in other rivers. Humic-like components C1, C2, C3 and protein-like components C4 were detected in the three rivers, among which C1, C2 and C3 were similar in origin and different from C4. The variation of maximum fluorescence intensity and total fluorescence intensity of each component in the three rivers showed that CDOM of the Fu River was from point and non-point mixed sources, CDOM of the Xiaoyi River was mainly from point sources, and CDOM of the Baigouyin River diversion was contained by the water source itself.
-
表 1 紫外-可见吸收光谱参数与DOC的相关性
Table 1. Correlation between UV-vis absorption spectrum parameters and DOC
项目 a(350) SUVA254 SUVA260 E2/E3 a(350) 1 SUVA254 0.573** 1 SUVA260 0.581** 0.905** 1 E2/E3 −0.549** −0.742** −0.692** 1 注:*表示在P<0.05水平显著相关;**表示在P<0.01水平极显著相关。 表 2 利用PARAFAC模型识别的4个组分的光谱特性
Table 2. Spectral characteristics of four components identified by PARAFAC model
组分 (Exmax/Emmax)/
(nm/nm)传统峰 描述 分子特征 匹配
数量C1 330/410 M 类腐殖质 低分子量,微生物转化 11 C2 360/445 C 类腐殖质 芳香族,高分子量 1 C3 390~400/
400~500C 类腐殖质 高分子量,高芳香性 4 C4 285~290/320 T 类色氨酸 脂肪族,高分子量,
亲水性好5 注:Exmax和Emmax分别表示各组分的最大激发波长和发射波长的近似位置。 表 3 PARAFAC模型中CDOM吸收系数与组分荧光强度之间的关系
Table 3. Relationship between CDOM absorption coefficient and component fluorescence intensity in PARAFAC model
河流 参数 a(350) DOC Fmax(C1) Fmax(C2) Fmax(C3) Fmax(C4) 府河 a(350) 1 DOC 0.529** 1 Fmax(C1) 0.310 0.697** 1 Fmax(C2) 0.295 0.700** 0.972** 1 Fmax(C3) 0.322* 0.733** 0.957** 0.988** 1 Fmax(C4) 0.077 0.528* 0.779** 0.631** 0.603* 1 孝义
河a(350) 1 DOC 0.680** 1 Fmax(C1) 0.550* 0.603* 1 Fmax(C2) 0.463* 0.634** 0.985** 1 Fmax(C3) 0.265 0.694** 0.966** 0.994** 1 Fmax(C4) 0.434* 0.609* 0.451* 0.311 0.255 1 白沟
引河a(350) 1 DOC 0.587** 1 Fmax(C1) 0.146 0.798** 1 Fmax(C2) 0.127 0.743** 0.988** 1 Fmax(C3) 0.126 0.853** 0.944** 0.951** 1 Fmax(C4) 0.142 0.566* 0.850** 0.807** 0.780** 1 注:同表1。 表 4 水质参数与荧光组分的回归分析
Table 4. Regression analysis of water quality parameters and fluorescence components
河流 回归方程 决定系数(R2) 方差膨胀
系数(VIF)府河 [COD]=7.713+3.885×Fmax(C3) 0.379** 1.0 [TN]=3.720+0.533×Fmax(C2) 0.129* 1.0 孝义河 [COD]=9.710+14.518×Fmax(C2)−
25.333× F max(C3)0.950** 1.25 [NH4 +-N]=−0.049−0.045×F max(C1)+
0.008×F max(C4)+0.215×F max(C3)0.949** 1.0 [TP]=0.008+0.007×F max(C4) 0.861** 1.0 [TN]=−3.527+2.079× F max(C2)+
2.864× F max(C3)− 0.084× F max(C4)0.995* 1.07 白沟引河 [COD]=2.061+7.601×Fmax(C3) 0.698** 1.0 [NH4 +-N]=0.171−0.006×Fmax(C4) 0.190* 1.0 [TN]=6.376−2.086× F max(C4) 0.223* 1.0 3条河流
所有
采样点[COD]=5.238+5.545×Fmax(C3) 0.518** 1.0 [NH4 +-N]=0.185+0.050× F max(C1) 0.063* 1.0 [TP]=0.098+0.130× F max(C2)−0.065×
F max(C1)− 0.154× F max(C3)0.240* 1.0 [TN]=2.951+0.868× F max(C2)−
0.154× F max(C4)0.211* 1.0 注:同表1。 -
[1] COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1998,45(10/11):2195-2223. [2] 张晓亮, 王洪波, 杨芳, 等.山东省平度市农村黑臭水体 DOM 三维荧光光谱的平行因子分析[J]. 环境工程技术学报,2022,12(3):651-659.ZHANG X L, WANG H B, YANG F, et al. Parallel factor analysis with three-dimensional excitation-emission matrix spectroscopy on dissolved organic matter of rural black and odorous water bodies in Pingdu City of Shandong Province[J]. Journal of Environmental Engineering Technology,2022,12(3):651-659. [3] LIU D, DU Y X, YU S J, et al. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River[J]. Water Research,2020,168:115132. doi: 10.1016/j.watres.2019.115132 [4] ZHANG Y L, LIU X H, OSBURN C L, et al. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra[J]. PLoS One,2013,8(10):e77515. doi: 10.1371/journal.pone.0077515 [5] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J]. Journal of Oceanology and Limnology,2021,39(4):1256-1276. doi: 10.1007/s00343-020-0102-x [6] PATIDAR S K, CHOKSHI K, GEORGE B, et al. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India[J]. Environmental Monitoring and Assessment,2015,187(1):4118. doi: 10.1007/s10661-014-4118-6 [7] CHEN B F, HUANG W, MA S Z, et al. Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes Taihu and Hongze during the algal bloom season[J]. Water,2018,10(7):861. doi: 10.3390/w10070861 [8] WEN Z D, SONG K S, LIU G, et al. Characterizing DOC sources in China's Haihe River Basin using spectroscopy and stable carbon isotopes[J]. Environmental Pollution,2020,258:113684. doi: 10.1016/j.envpol.2019.113684 [9] 刘东萍, 高红杰, 崔兵, 等.白塔堡河底泥 DOM 组成结构的荧光光谱与多元统计模型表征[J]. 环境工程技术学报,2021,11(2):249-257.LIU D P, GAO H J, CUI B, et al. Fluorescence spectra and multivariate statistical model characterization of DOM composition structure of Baitapu River sediment[J]. Journal of Environmental Engineering Technology,2021,11(2):249-257. [10] KIM J, KIM Y, PARK S E, et al. Impact of aquaculture on distribution of dissolved organic matter in coastal Jeju Island, Korea, based on absorption and fluorescence spectroscopy[J]. Environmental Science and Pollution Research International,2022,29(1):553-563. doi: 10.1007/s11356-021-15553-3 [11] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3/4):239-254. [12] TANG X Y, CUI Z G, BAI Y, et al. Indirect photodegradation of sulfathiazole and sulfamerazine: influence of the CDOM components and seawater factors (salinity, pH, nitrate and bicarbonate)[J]. Science of the Total Environment,2021,750:141762. doi: 10.1016/j.scitotenv.2020.141762 [13] VILA DUPLÁ M. Characterization of cDOM in the Elkhorn Slough Estuary using EEM spectroscopy and its potential for macrophyte monitoring[J]. Journal of Marine Systems,2022,226:103661. doi: 10.1016/j.jmarsys.2021.103661 [14] HUANG Q, LIU L Z, HUANG J C, et al. Seasonal dynamics of chromophoric dissolved organic matter in Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology,2022,605:127298. doi: 10.1016/j.jhydrol.2021.127298 [15] ZHOU S L, SUN Y, YUAN S C, et al. Temporal and spatial distribution characteristics and difference analysis of chromophoric dissolved organic matter in sediment interstitial water from Gangnan Reservoir[J]. Environmental Science,2020,41(6):2635-2645. [16] 高洁, 江韬, 李璐璐, 等.三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学,2015,36(1):151-162. doi: 10.13227/j.hjkx.2015.01.020GAO J, JIANG T, LI L L, et al. Ultraviolet-visible (UV-vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science,2015,36(1):151-162. doi: 10.13227/j.hjkx.2015.01.020 [17] 纪美辰, 李思佳, 常明, 等.二龙湖表层水体有色溶解有机物的光学特性及来源[J]. 环境科学研究,2020,33(8):1821-1829. doi: 10.13198/j.issn.1001-6929.2020.04.16JI M C, LI S J, CHANG M, et al. Photometric characteristics and sources of colored dissolved organic matter in surface water from Erlong Lake[J]. Research of Environmental Sciences,2020,33(8):1821-1829. doi: 10.13198/j.issn.1001-6929.2020.04.16 [18] SOTO CÁRDENAS C, GEREA M, GARCIA P E, et al. Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): a field study based on optical properties[J]. Ecohydrology,2017,10(7):e1872. doi: 10.1002/eco.1872 [19] LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology,2017,47(3):131-154. doi: 10.1080/10643389.2017.1309186 [20] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology,2003,37(20):4702-4708. [21] JAFFRAIN J, GÉRARD F, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal,2007,71(6):1851-1858. doi: 10.2136/sssaj2006.0202 [22] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645 [23] LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Shift in the chemical composition of dissolved organic matter in the Congo River network[J]. Biogeosciences,2016,13(18):5405-5420. doi: 10.5194/bg-13-5405-2016 [24] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry,2009,40(6):706-719. doi: 10.1016/j.orggeochem.2009.03.002 [25] 张道萍, 张铃松, 孟凡生, 等.黑龙江流域典型断面水体DOM荧光特性分析[J]. 环境科学研究,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08ZHANG D P, ZHANG L S, MENG F S, et al. Fluorescence characteristics analysis of DOM in typical section of Heilongjiang River Basin[J]. Research of Environmental Sciences,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08 [26] TAO P R, JIN M, YU X B, et al. Spatiotemporal variations in chromophoric dissolved organic matter (CDOM) in a mixed land-use river: implications for surface water restoration[J]. Journal of Environmental Management,2021,277:111498. doi: 10.1016/j.jenvman.2020.111498 [27] CHEN M L, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research,2017,121:150-161. doi: 10.1016/j.watres.2017.05.022 [28] CHEN M L, PARK M, KIM J H, et al. Exploring pore water biogeochemical characteristics as environmental monitoring proxies for a CO2 storage project in Pohang Basin, South Korea[J]. Marine Pollution Bulletin,2018,137:331-338. doi: 10.1016/j.marpolbul.2018.10.036 [29] 杨垒, 李晓彤, 任勇翔, 等.基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性[J]. 环境科学研究,2022,35(7):1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22YANG L, LI X T, REN Y X, et al. Analysis of DOM transformation in polluted urban rivers by anaerobic biofilter based on EEM-PARAFAC[J]. Research of Environmental Sciences,2022,35(7):1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22 [30] GAO Z Y, GUÉGUEN C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Research Part I:Oceanographic Research Papers,2017,121:30-37. doi: 10.1016/j.dsr.2016.12.014 [31] HONG H L, WU S J, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment,2021,790:147855. doi: 10.1016/j.scitotenv.2021.147855 [32] LEE S A, KIM T H, KIM G. Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes[J]. Biogeosciences,2020,17(1):135-144. doi: 10.5194/bg-17-135-2020 [33] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography:Methods,2008,6(11):572-579. doi: 10.4319/lom.2008.6.572 [34] XIAO K, LIANG S, XIAO A H, et al. Fluorescence quotient of excitation–emission matrices as a potential indicator of organic matter behavior in membrane bioreactors[J]. Environmental Science:Water Research & Technology,2018,4(2):281-290. [35] AIKEN G. Fluorescence and dissolved organic matter: a chemist's perspective[M]//COBLE P G, LEAD J, BAKER A. aquatic organic matter fluorescence. Oxford: Cambridge University Press, 2014: 35-74.