留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白洋淀入淀河流溶解有机物沿程变化特征及来源解析

岳龙飞 李洪波 梁淑轩 李平 姜甜甜 刘晶 赵建国

岳龙飞,李洪波,梁淑轩,等.白洋淀入淀河流溶解有机物沿程变化特征及来源解析[J].环境工程技术学报,2023,13(3):1050-1060 doi: 10.12153/j.issn.1674-991X.20220425
引用本文: 岳龙飞,李洪波,梁淑轩,等.白洋淀入淀河流溶解有机物沿程变化特征及来源解析[J].环境工程技术学报,2023,13(3):1050-1060 doi: 10.12153/j.issn.1674-991X.20220425
YUE L F,LI H B,LIANG S X,et al.Variation characteristics and source analysis of dissolved organic matter along the river into Baiyangdian Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1050-1060 doi: 10.12153/j.issn.1674-991X.20220425
Citation: YUE L F,LI H B,LIANG S X,et al.Variation characteristics and source analysis of dissolved organic matter along the river into Baiyangdian Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1050-1060 doi: 10.12153/j.issn.1674-991X.20220425

白洋淀入淀河流溶解有机物沿程变化特征及来源解析

doi: 10.12153/j.issn.1674-991X.20220425
基金项目: 河北省省级科技计划资源与环境创新专项项目(21374203D);白洋淀水生态环境质量综合评价技术规范项目(ST202205)
详细信息
    作者简介:

    岳龙飞(1996—),男,硕士研究生,主要从事水环境研究,15951003982@163.com

    通讯作者:

    李洪波(1969—),男,正高级工程师,研究方向为水生态修复,lhbhky@163.com

    梁淑轩(1967—),女,教授,主要从事环境污染监测及溯源分析研究,liangsx168@126.com

  • 中图分类号: X522

Variation characteristics and source analysis of dissolved organic matter along the river into Baiyangdian Lake

  • 摘要:

    采用紫外-可见吸收光谱、三维荧光光谱,结合平行因子分析、主成分分析等方法,分析了白洋淀3条入淀河流(府河、孝义河、白沟引河)中发色团溶解有机物(CDOM)的光谱特征,阐释了CDOM组成、来源及对水质的影响机制。结果发现:河流CDOM平均浓度顺序为府河>孝义河>白沟引河,其中,府河CDOM的芳香性与分子量高于其他河流,白沟引河腐殖化程度高于其他河流,孝义河CDOM中内源性物质占比高于其他河流;3条河流均检出类腐殖质组分C1、C2、C3和类蛋白质组分C4,其中C1、C2、C3来源相近,且与C4异源;3条河流各组分最大荧光强度和总荧光强度的沿程变化表明,府河CDOM为点源、面源混合来源,孝义河CDOM以点源输入为主,白沟引河CDOM来自水源本身。

     

  • 图  1  研究区采样点分布

    Figure  1.  Distribution of sampling points in the study area

    图  2  3条河流不同河段的DOC浓度和光谱特征参数箱线图

    Figure  2.  Boxplots of DOC concentration and spectral characteristic parameters at different river sections of three rivers

    图  3  3条河流不同河段的荧光参数箱线图

    Figure  3.  Boxplots of fluorescence parameters at different river sections of three rivers

    图  4  PARAFAC模型分离的4种荧光组分及其激发/发射载荷

    Figure  4.  Four fluorescence components separated by PARAFAC model and their excitation/emission loads

    图  5  3条河流各采样点PARAFAC组分的沿程变化

    Figure  5.  Variation of PARAFAC components along the river at sampling points of three rivers

    图  6  光学参数和水质指标的主成分分析结果

    注:椭圆表示各组采样点 95% 的置信椭圆。右轴和上轴表示图中各参数与PC1和PC2的相关性,轴上数字为相关性系数。

    Figure  6.  Results of principal component analysis of optical parameters and water quality indexes

    表  1  紫外-可见吸收光谱参数与DOC的相关性

    Table  1.   Correlation between UV-vis absorption spectrum parameters and DOC

    项目a(350)SUVA254SUVA260E2/E3
    a(350)1
    SUVA2540.573**1
    SUVA2600.581**0.905**1
    E2/E3−0.549**−0.742**−0.692**1
      注:*表示在P<0.05水平显著相关;**表示在P<0.01水平极显著相关。
    下载: 导出CSV

    表  2  利用PARAFAC模型识别的4个组分的光谱特性

    Table  2.   Spectral characteristics of four components identified by PARAFAC model

    组分(Exmax/Emmax)/
    (nm/nm)
    传统峰描述分子特征匹配
    数量
    C1330/410M类腐殖质低分子量,微生物转化11
    C2360/445C类腐殖质芳香族,高分子量1
    C3390~400/
    400~500
    C类腐殖质高分子量,高芳香性4
    C4285~290/320T类色氨酸脂肪族,高分子量,
    亲水性好
    5
      注:ExmaxEmmax分别表示各组分的最大激发波长和发射波长的近似位置。
    下载: 导出CSV

    表  3  PARAFAC模型中CDOM吸收系数与组分荧光强度之间的关系

    Table  3.   Relationship between CDOM absorption coefficient and component fluorescence intensity in PARAFAC model

    河流参数a(350)DOCFmax(C1)Fmax(C2)Fmax(C3)Fmax(C4)
    府河 a(350) 1
    DOC 0.529** 1
    Fmax(C1) 0.310 0.697** 1
    Fmax(C2) 0.295 0.700** 0.972** 1
    Fmax(C3) 0.322* 0.733** 0.957** 0.988** 1
    Fmax(C4) 0.077 0.528* 0.779** 0.631** 0.603* 1
    孝义
    a(350) 1
    DOC 0.680** 1
    Fmax(C1) 0.550* 0.603* 1
    Fmax(C2) 0.463* 0.634** 0.985** 1
    Fmax(C3) 0.265 0.694** 0.966** 0.994** 1
    Fmax(C4) 0.434* 0.609* 0.451* 0.311 0.255 1
    白沟
    引河
    a(350) 1
    DOC 0.587** 1
    Fmax(C1) 0.146 0.798** 1
    Fmax(C2) 0.127 0.743** 0.988** 1
    Fmax(C3) 0.126 0.853** 0.944** 0.951** 1
    Fmax(C4) 0.142 0.566* 0.850** 0.807** 0.780** 1
      注:同表1
    下载: 导出CSV

    表  4  水质参数与荧光组分的回归分析

    Table  4.   Regression analysis of water quality parameters and fluorescence components

    河流回归方程决定系数(R2方差膨胀
    系数(VIF)
    府河[COD]=7.713+3.885×Fmax(C3)0.379**1.0
    [TN]=3.720+0.533×Fmax(C2)0.129*1.0
    孝义河[COD]=9.710+14.518×Fmax(C2)−
    25.333× F max(C3)
    0.950**1.25
    [NH4 +-N]=−0.049−0.045×F max(C1)+
    0.008×F max(C4)+0.215×F max(C3)
    0.949**1.0
    [TP]=0.008+0.007×F max(C4)0.861**1.0
    [TN]=−3.527+2.079× F max(C2)+
    2.864× F max(C3)− 0.084× F max(C4)
    0.995*1.07
    白沟引河[COD]=2.061+7.601×Fmax(C3)0.698**1.0
    [NH4 +-N]=0.171−0.006×Fmax(C4)0.190*1.0
    [TN]=6.376−2.086× F max(C4)0.223*1.0
    3条河流
    所有
    采样点
    [COD]=5.238+5.545×Fmax(C3)0.518**1.0
    [NH4 +-N]=0.185+0.050× F max(C1)0.063*1.0
    [TP]=0.098+0.130× F max(C2)−0.065×
    F max(C1)− 0.154× F max(C3)
    0.240*1.0
    [TN]=2.951+0.868× F max(C2)−
    0.154× F max(C4)
    0.211*1.0
      注:同表1
    下载: 导出CSV
  • [1] COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1998,45(10/11):2195-2223.
    [2] 张晓亮, 王洪波, 杨芳, 等.山东省平度市农村黑臭水体 DOM 三维荧光光谱的平行因子分析[J]. 环境工程技术学报,2022,12(3):651-659.

    ZHANG X L, WANG H B, YANG F, et al. Parallel factor analysis with three-dimensional excitation-emission matrix spectroscopy on dissolved organic matter of rural black and odorous water bodies in Pingdu City of Shandong Province[J]. Journal of Environmental Engineering Technology,2022,12(3):651-659.
    [3] LIU D, DU Y X, YU S J, et al. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River[J]. Water Research,2020,168:115132. doi: 10.1016/j.watres.2019.115132
    [4] ZHANG Y L, LIU X H, OSBURN C L, et al. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra[J]. PLoS One,2013,8(10):e77515. doi: 10.1371/journal.pone.0077515
    [5] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J]. Journal of Oceanology and Limnology,2021,39(4):1256-1276. doi: 10.1007/s00343-020-0102-x
    [6] PATIDAR S K, CHOKSHI K, GEORGE B, et al. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India[J]. Environmental Monitoring and Assessment,2015,187(1):4118. doi: 10.1007/s10661-014-4118-6
    [7] CHEN B F, HUANG W, MA S Z, et al. Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes Taihu and Hongze during the algal bloom season[J]. Water,2018,10(7):861. doi: 10.3390/w10070861
    [8] WEN Z D, SONG K S, LIU G, et al. Characterizing DOC sources in China's Haihe River Basin using spectroscopy and stable carbon isotopes[J]. Environmental Pollution,2020,258:113684. doi: 10.1016/j.envpol.2019.113684
    [9] 刘东萍, 高红杰, 崔兵, 等.白塔堡河底泥 DOM 组成结构的荧光光谱与多元统计模型表征[J]. 环境工程技术学报,2021,11(2):249-257.

    LIU D P, GAO H J, CUI B, et al. Fluorescence spectra and multivariate statistical model characterization of DOM composition structure of Baitapu River sediment[J]. Journal of Environmental Engineering Technology,2021,11(2):249-257.
    [10] KIM J, KIM Y, PARK S E, et al. Impact of aquaculture on distribution of dissolved organic matter in coastal Jeju Island, Korea, based on absorption and fluorescence spectroscopy[J]. Environmental Science and Pollution Research International,2022,29(1):553-563. doi: 10.1007/s11356-021-15553-3
    [11] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82(3/4):239-254.
    [12] TANG X Y, CUI Z G, BAI Y, et al. Indirect photodegradation of sulfathiazole and sulfamerazine: influence of the CDOM components and seawater factors (salinity, pH, nitrate and bicarbonate)[J]. Science of the Total Environment,2021,750:141762. doi: 10.1016/j.scitotenv.2020.141762
    [13] VILA DUPLÁ M. Characterization of cDOM in the Elkhorn Slough Estuary using EEM spectroscopy and its potential for macrophyte monitoring[J]. Journal of Marine Systems,2022,226:103661. doi: 10.1016/j.jmarsys.2021.103661
    [14] HUANG Q, LIU L Z, HUANG J C, et al. Seasonal dynamics of chromophoric dissolved organic matter in Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology,2022,605:127298. doi: 10.1016/j.jhydrol.2021.127298
    [15] ZHOU S L, SUN Y, YUAN S C, et al. Temporal and spatial distribution characteristics and difference analysis of chromophoric dissolved organic matter in sediment interstitial water from Gangnan Reservoir[J]. Environmental Science,2020,41(6):2635-2645.
    [16] 高洁, 江韬, 李璐璐, 等.三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学,2015,36(1):151-162. doi: 10.13227/j.hjkx.2015.01.020

    GAO J, JIANG T, LI L L, et al. Ultraviolet-visible (UV-vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science,2015,36(1):151-162. doi: 10.13227/j.hjkx.2015.01.020
    [17] 纪美辰, 李思佳, 常明, 等.二龙湖表层水体有色溶解有机物的光学特性及来源[J]. 环境科学研究,2020,33(8):1821-1829. doi: 10.13198/j.issn.1001-6929.2020.04.16

    JI M C, LI S J, CHANG M, et al. Photometric characteristics and sources of colored dissolved organic matter in surface water from Erlong Lake[J]. Research of Environmental Sciences,2020,33(8):1821-1829. doi: 10.13198/j.issn.1001-6929.2020.04.16
    [18] SOTO CÁRDENAS C, GEREA M, GARCIA P E, et al. Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): a field study based on optical properties[J]. Ecohydrology,2017,10(7):e1872. doi: 10.1002/eco.1872
    [19] LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology,2017,47(3):131-154. doi: 10.1080/10643389.2017.1309186
    [20] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology,2003,37(20):4702-4708.
    [21] JAFFRAIN J, GÉRARD F, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal,2007,71(6):1851-1858. doi: 10.2136/sssaj2006.0202
    [22] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
    [23] LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Shift in the chemical composition of dissolved organic matter in the Congo River network[J]. Biogeosciences,2016,13(18):5405-5420. doi: 10.5194/bg-13-5405-2016
    [24] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry,2009,40(6):706-719. doi: 10.1016/j.orggeochem.2009.03.002
    [25] 张道萍, 张铃松, 孟凡生, 等.黑龙江流域典型断面水体DOM荧光特性分析[J]. 环境科学研究,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08

    ZHANG D P, ZHANG L S, MENG F S, et al. Fluorescence characteristics analysis of DOM in typical section of Heilongjiang River Basin[J]. Research of Environmental Sciences,2021,34(5):1099-1110. doi: 10.13198/j.issn.1001-6929.2020.08.08
    [26] TAO P R, JIN M, YU X B, et al. Spatiotemporal variations in chromophoric dissolved organic matter (CDOM) in a mixed land-use river: implications for surface water restoration[J]. Journal of Environmental Management,2021,277:111498. doi: 10.1016/j.jenvman.2020.111498
    [27] CHEN M L, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research,2017,121:150-161. doi: 10.1016/j.watres.2017.05.022
    [28] CHEN M L, PARK M, KIM J H, et al. Exploring pore water biogeochemical characteristics as environmental monitoring proxies for a CO2 storage project in Pohang Basin, South Korea[J]. Marine Pollution Bulletin,2018,137:331-338. doi: 10.1016/j.marpolbul.2018.10.036
    [29] 杨垒, 李晓彤, 任勇翔, 等.基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性[J]. 环境科学研究,2022,35(7):1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22

    YANG L, LI X T, REN Y X, et al. Analysis of DOM transformation in polluted urban rivers by anaerobic biofilter based on EEM-PARAFAC[J]. Research of Environmental Sciences,2022,35(7):1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22
    [30] GAO Z Y, GUÉGUEN C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Research Part I:Oceanographic Research Papers,2017,121:30-37. doi: 10.1016/j.dsr.2016.12.014
    [31] HONG H L, WU S J, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment,2021,790:147855. doi: 10.1016/j.scitotenv.2021.147855
    [32] LEE S A, KIM T H, KIM G. Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes[J]. Biogeosciences,2020,17(1):135-144. doi: 10.5194/bg-17-135-2020
    [33] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography:Methods,2008,6(11):572-579. doi: 10.4319/lom.2008.6.572
    [34] XIAO K, LIANG S, XIAO A H, et al. Fluorescence quotient of excitation–emission matrices as a potential indicator of organic matter behavior in membrane bioreactors[J]. Environmental Science:Water Research & Technology,2018,4(2):281-290.
    [35] AIKEN G. Fluorescence and dissolved organic matter: a chemist's perspective[M]//COBLE P G, LEAD J, BAKER A. aquatic organic matter fluorescence. Oxford: Cambridge University Press, 2014: 35-74.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  172
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05

目录

    /

    返回文章
    返回