留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOFs在水处理应用领域研究的文献计量学分析

秦伟伟 唐嘉 杜丛 段晓虎 肖书虎 颜秉斐

秦伟伟,唐嘉,杜丛,等.MOFs在水处理应用领域研究的文献计量学分析[J].环境工程技术学报,2023,13(3):1168-1178 doi: 10.12153/j.issn.1674-991X.20220433
引用本文: 秦伟伟,唐嘉,杜丛,等.MOFs在水处理应用领域研究的文献计量学分析[J].环境工程技术学报,2023,13(3):1168-1178 doi: 10.12153/j.issn.1674-991X.20220433
QIN W W,TANG J,DU C,et al.Bibliometric analysis of MOFs in the field of water treatment applications[J].Journal of Environmental Engineering Technology,2023,13(3):1168-1178 doi: 10.12153/j.issn.1674-991X.20220433
Citation: QIN W W,TANG J,DU C,et al.Bibliometric analysis of MOFs in the field of water treatment applications[J].Journal of Environmental Engineering Technology,2023,13(3):1168-1178 doi: 10.12153/j.issn.1674-991X.20220433

MOFs在水处理应用领域研究的文献计量学分析

doi: 10.12153/j.issn.1674-991X.20220433
基金项目: 国家自然科学基金项目(51808518)
详细信息
    作者简介:

    秦伟伟(1986—),女,博士,主要从事水污染控制理论与技术研究,weiwei.qin@swjtu.edu.cn

    通讯作者:

    肖书虎(1979—),男,研究员,博士,主要从事水质净化技术及原理研究,xiaoshuhu@126.com

    颜秉斐(1989—),女,工程师,硕士,主要从事水生态处理技术及原理研究,ybf201506@163.com

  • 中图分类号: X703

Bibliometric analysis of MOFs in the field of water treatment applications

  • 摘要:

    金属有机框架(MOFs)材料具有比表面积大、孔隙率高,结构和功能可调等优异特性,在水处理领域应用广泛。为深入了解MOFs在水处理应用领域的研究热点和发展趋势,采用文献计量学方法,利用VOSviewer软件对Web of ScienceTM核心合集数据库中MOFs在水处理应用领域相关文献进行定量分析。结果表明:1995—2021年MOFs在水处理应用领域研究发文量共1 281篇,发文量总体呈逐年递增的趋势;中国是该研究领域发文量和总被引次数最高的国家,发文量达800篇,但篇均被引次数相对较低;Jhung S H是该领域最富有成效的作者,其发表的14篇论文总被引次数为1 657次。该领域研究热点为使用MOFs改性复合升级材料(如MOFs衍生碳、MOFs膜等)及运用吸附去除、催化降解等方式处理水中的染料、重金属离子等典型污染物,未来应注重低廉高效合成方法的探索,材料稳定性和可重复性的提升以及改性方式和污染物结构特性的构效关系,复合物或衍生物的作用机制等方面的研究。

     

  • 图  1  2006—2021年MOFs在水处理应用领域研究的发文量与被引情况

    Figure  1.  Annual number of articles and citation conditions of MOFs in the application field of water treatment from 2006 to 2021

    图  2  2014—2021年MOFs在水处理应用领域研究论文发展的时空特征

    Figure  2.  Spatiotemporal characteristics of the development of paper on MOFs in water treatment applications from 2014 to 2021

    图  3  MOFs在水处理应用领域作者之间的协作网络

    Figure  3.  Collaborative network among authors of MOFs in the application field of water treatment

    图  4  MOFs在水处理应用领域研究各机构之间的协作网络

    Figure  4.  Collaborative network between institutions of MOFs in the application field of water treatment

    图  5  MOFs在水处理应用领域的热点聚类

    Figure  5.  Hotspot cluster of MOFs in the application field of water treatment

    表  1  MOFs在水处理应用领域研究总被引次数最高的前10篇论文

    Table  1.   The top 10 most cited papers of MOFs in the application field of water treatment

    篇名作者发文期刊被引次
    数/次
    Photocatalytic organic pollutants degradation in metal-organic frameworksWang C CEnergy & Environmental Science1058
    Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptionsHasan ZJournal of Hazardous Materials821
    Applications of water stable metal-organic frameworksWang C HChemical Society Reviews651
    State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directionsRezakazemi MProgress in Polymer Science539
    Recent development of advanced materials with special wettability for selective oil/water separationMa Q LSmall502
    Direct sysnthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatmentTorad N LSmall485
    Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the fieldDias E MJournal of Materials Chemistry A396
    Nanozymes in bionanotechnology: from sensing to therapeutics and beyondWang X YInorganic Chemistry Frontiers383
    Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalinationWang Z YNature Communications361
    Removal of emerging contaminants from the environment by adsorptionSophia A CEcotoxicology and Environmental Safety355
    下载: 导出CSV

    表  2  MOFs在水处理应用领域研究发文量排名前10的国家

    Table  2.   Top 10 countries of MOFs in the application field of water treatment

    国家发文量/篇总被引次数/次篇均被引次数/次
    中国80026 06732.58
    美国1195 34544.92
    印度1052 63225.07
    伊朗1042 44223.48
    韩国833 81545.96
    澳大利亚642 61340.83
    新加坡473 07865.49
    西班牙3795425.78
    沙特阿拉伯361 23334.25
    英国351 94455.54
    下载: 导出CSV

    表  3  MOFs在水处理应用领域发文量排名前10的期刊

    Table  3.   Top 10 journals of MOFs in the application field of water treatment

    期刊发文量/篇影响因子
    Chemical Engineering Journal9711.529
    ACS Applied Materials & Interfaces439.57
    Journal of Hazardous Materials4210.129
    Chemosphere366.956
    Journal of Environmental Chemical Engineering355.649
    RSC Advances333.39
    Journal of Membrane Science308.411
    Journal of Materials Chemistry A2911.995
    Journal of Colloid and Interface Science257.211
    Separation and Purification Technology246.656
    下载: 导出CSV

    表  4  MOFs在水处理应用领域发文量排名前10作者

    Table  4.   Top 10 authors of MOFs in the application field of water treatment

    作者发文量/篇总被引次数篇均被引次数/次
    Wang Y3060020
    Liu Y221 25952.46
    Wang J201 24862.4
    Zeng G M161 661103.81
    Li J1573649.07
    Wang H1595063.33
    Xiong W P1585256.8
    Zhang X1518812.53
    Ismail A F1485360.93
    Jhung S H141657118
    下载: 导出CSV

    表  5  MOFs在水处理应用领域发文量排名前10的机构

    Table  5.   Top 10 institutions of MOFs in the application field of water treatment

    机构发文
    量/篇
    总被引
    次数
    篇均
    被引
    次数
    H
    英文中文
    Chinese Academy of
    Sciences
    中国科学院883 85043.7531
    Hunan Univ湖南大学432 66662.0025
    National Univ of
    Singapore
    新加坡国立
    大学
    281 59156.8218
    South China Univ of
    Technology
    华南理工大学271 25046.3017
    Egyptian Knowledge
    Bank Ekb
    埃及知识库2654921.1213
    Kyungpook
    National Univ
    韩国庆北
    国立大学
    242 04885.3319
    Beijing Univ of
    Chemical Technology
    北京化工
    大学
    2281737.1412
    Tsinghua Univ清华大学2167031.9013
    Univ of Chinese Academy
    of Sciences
    中国科学院大学2157327.2914
    Univ of Science and
    Technology of China
    中国科学
    技术大学
    191 03054.2112
      注:H指数即高引用次数,指某研究机构至多有h篇论文被引用了至少h次。
    下载: 导出CSV

    表  6  2017—2021年MOFs在水处理应用领域各阶段关键词及排序

    Table  6.   Prevalent keywords of different stages of MOFs in the application field of water treatment from 2017 to 2021

    排名2021年2020年2019年2018年2017年
    关键词出现次数关键词出现次数关键词出现频次/次关键词出现次数关键词出现次数
    1adsorption70adsorption49adsorption38adsorption26adsorption19
    2nanoparticles31degradation27performance16activated carbon8performance8
    3performance26nanoparticles20degradation14nanoparticles8acid6
    4degradation26graphene oxide14composites12stability7nanoparticles6
    5activated carbon20oxidation14methylene-blue12performance7ZIF-86
    6graphene oxide18performance13nanoparticles11graphene oxide6dyes5
    7advanced oxidation processes18personal care products12activated carbon10composites6graphene oxide5
    8ZIF-817efficient removal11mechanism10adsorbent6activated carbon4
    9efficient removal17advanced oxidation processes11adsorbent9fabrication6UiO-664
    10photocatalytic degradation15pharmaceuticals11graphene oxide8methylene-blue6nanofiltration4
    下载: 导出CSV
  • [1] 张统, 李志颖, 董春宏, 等.我国工业废水处理现状及污染防治对策[J]. 给水排水,2020,56(10):1-3.

    ZHANG T, LI Z Y, DONG C H, et al. Current situation of industrial wastewater treatment and countermeasures of pollution control in China[J]. Water & Wastewater Engineering,2020,56(10):1-3.
    [2] YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature,1995,378(6558):703-706. doi: 10.1038/378703a0
    [3] 陈洁. 染料类金属-有机框架材料对结构相似轻烃的吸附分离性能研究[D]. 杭州: 浙江大学, 2021.
    [4] 赵怀远. 金属有机框架衍生材料的制备及应用[D]. 杭州: 浙江大学, 2021.
    [5] WANG D B, JIA F Y, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science,2018,519:273-284. doi: 10.1016/j.jcis.2018.02.067
    [6] AHMADIJOKANI F, MOHAMMADKHANI R, AHMADIPOUYA S, et al. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption[J]. Chemical Engineering Journal,2020,399:125346. doi: 10.1016/j.cej.2020.125346
    [7] 张雅然,付正辉,王书航,等.基于Web of Science和CNKI的湖泊沉积物文献计量分析[J]. 环境工程技术学报,2022,12(1):110-118. doi: 10.12153/j.issn.1674-991X.20210113

    ZHANG Y R,FU Z H,WANG S H,et al. Current situation of research on intersection of fishery resources and ecological environment: bibliometrics and visualization analysis based on Web of Science[J]. Journal of Environmental Engineering Technology,2022,12(1):110-118. doi: 10.12153/j.issn.1674-991X.20210113
    [8] Web of Science核心合集[DB/OL]. [2018-08-06]. http://apps.webofknowledge.com.
    [9] van ECK N, WALTMAN L. VOSviewer: a computer program for bibliometric mapping[J]. ERIM Report Series Research in Management,2009,84(2):523-538.
    [10] WANG C C, LI J R, LÜ X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy Environmental Science,2014,7(9):2831-2867. doi: 10.1039/C4EE01299B
    [11] REZAKAZEMI M, EBADI AMOOGHIN A, MONTAZER-RAHMATI M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions[J]. Progress in Polymer Science,2014,39(5):817-861. doi: 10.1016/j.progpolymsci.2014.01.003
    [12] DOHERTY C M, BUSO D, HILL A J, et al. Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties[J]. Accounts of Chemical Research,2014,47(2):396-405. doi: 10.1021/ar400130a
    [13] TORAD N L, HU M, ISHIHARA S, et al. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment[J]. Small,2014,10(10):2096-2107. doi: 10.1002/smll.201302910
    [14] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials,2015,283:329-339. doi: 10.1016/j.jhazmat.2014.09.046
    [15] PI Y H, LI X Y, XIA Q B, et al. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal,2018,337:351-371. doi: 10.1016/j.cej.2017.12.092
    [16] BHADRA B N, AHMED I, KIM S, et al. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon[J]. Chemical Engineering Journal,2017,314:50-58. doi: 10.1016/j.cej.2016.12.127
    [17] AHMED I, PANJA T, KHAN N A, et al. Nitrogen-doped porous carbons from ionic Liquids@MOF: remarkable adsorbents for both aqueous and nonaqueous media[J]. ACS Applied Materials & Interfaces,2017,9(11):10276-10285.
    [18] AN H J, BHADRA B N, KHAN N A, et al. Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon[J]. Chemical Engineering Journal,2018,343:447-454. doi: 10.1016/j.cej.2018.03.025
    [19] BHADRA B N, LEE J K, CHO C W, et al. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon[J]. Chemical Engineering Journal,2018,343:225-234. doi: 10.1016/j.cej.2018.03.004
    [20] WANG H, YUAN X Z, WU Y, et al. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis[J]. Applied Catalysis B:Environmental,2016,186:19-29. doi: 10.1016/j.apcatb.2015.12.041
    [21] WANG C H, KIM J, MALGRAS V, et al. Metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification[J]. Small,2019,15(16):1900744. doi: 10.1002/smll.201900744
    [22] HUO J B, YU G C, XU L, et al. Porous walnut-like La2O2CO3 derived from metal-organic frameworks for arsenate removal: a study of kinetics, isotherms, and mechanism[J]. Chemosphere,2021,271:129528. doi: 10.1016/j.chemosphere.2020.129528
    [23] NAZIR M A, BASHIR M S, JAMSHAID M, et al. Synthesis of porous secondary metal-doped MOFs for removal of Rhodamine B from water: role of secondary metal on efficiency and kinetics[J]. Surfaces and Interfaces,2021,25:101261. doi: 10.1016/j.surfin.2021.101261
    [24] SHAHZAD K, NAZIR M A, JAMSHAID M, et al. Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water[J]. International Journal of Environmental Analytical Chemistry, 2021: 1-14.
    [25] FANG S Y, ZHANG P, GONG J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chemical Engineering Journal,2020,385:123400. doi: 10.1016/j.cej.2019.123400
    [26] WANG X R, ZHAI L Z, WANG Y X, et al. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing[J]. ACS Applied Materials & Interfaces,2017,9(43):37848-37855.
    [27] ZHAO D L, ZHAO Q P, CHUNG T S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination[J]. Desalination,2021,516:115230. doi: 10.1016/j.desal.2021.115230
    [28] PARK J M, JHUNG S H. Polyaniline-derived carbons: remarkable adsorbents to remove atrazine and diuron herbicides from water[J]. Journal of Hazardous Materials,2020,396:122624. doi: 10.1016/j.jhazmat.2020.122624
    [29] AN H J, PARK J M, KHAN N A, et al. Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon[J]. Beilstein Journal of Nanotechnology,2020,11:597-605. doi: 10.3762/bjnano.11.47
    [30] BHADRA B N, JHUNG S H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon[J]. Microporous and Mesoporous Materials,2018,270:102-108. doi: 10.1016/j.micromeso.2018.05.005
    [31] 附青山, 张磊, 张伟, 等.金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报,2021,35(11):11100-11110. doi: 10.11896/cldb.19100039

    FU Q S, ZHANG L, ZHANG W, et al. Research progress in metal-organic frame materials for adsorptive removal of contamination in wastewater[J]. Materials Reports,2021,35(11):11100-11110. doi: 10.11896/cldb.19100039
    [32] 李瑞, 谢光银, 王贤, 等.金属有机框架衍生纳米孔碳材料的研究进展[J]. 合成纤维,2021,50(11):43-49.

    LI R, XIE G Y, WANG X, et al. Study progress of nanoporous carbon materials derived from metal organic frameworks[J]. Synthetic Fiber in China,2021,50(11):43-49.
    [33] ZHAO G H, FANG Y Y, DAI W, et al. Copper-containing porous carbon derived from MOF-199 for dibenzothiophene adsorption[J]. RSC Advances,2017,7(35):21649-21654. doi: 10.1039/C7RA02946B
    [34] AHMED I, BHADRA B N, LEE H J, et al. Metal-organic framework-derived carbons: preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water[J]. Catalysis Today,2018,301:90-97. doi: 10.1016/j.cattod.2017.02.011
    [35] FIROUZJAEI M D, SEYEDPOUR S F, AKTIJ S A, et al. Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis[J]. Journal of Membrane Science,2020,596:117604. doi: 10.1016/j.memsci.2019.117604
    [36] SUN M, YAN L L, ZHANG L H, et al. New insights into the rapid formation of initial membrane fouling after in situ cleaning in a membrane bioreactor[J]. Process Biochemistry,2019,78:108-113. doi: 10.1016/j.procbio.2019.01.004
    [37] JACOB L, JOSEPH S, VARGHESE L A. Polysulfone/MMT mixed matrix membranes for hexavalent chromium removal from wastewater[J]. Arabian Journal for Science and Engineering,2020,45(9):7611-7620. doi: 10.1007/s13369-020-04711-3
    [38] LI J, WANG H, YUAN X Z, et al. Metal-organic framework membranes for wastewater treatment and water regeneration[J]. Coordination Chemistry Reviews,2020,404:213116. doi: 10.1016/j.ccr.2019.213116
    [39] DECOSTE J B, DENNY M S Jr, PETERSON G W, et al. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption[J]. Chemical Science,2016,7(4):2711-2716. doi: 10.1039/C5SC04368A
    [40] ZHANG G P, WO R, SUN Z, et al. Effective magnetic MOFs adsorbent for the removal of bisphenol A, tetracycline, Congo red and methylene blue pollutions[J]. Nanomaterials (Basel, Switzerland),2021,11(8):1917. doi: 10.3390/nano11081917
    [41] FU Q S, ZHANG L, ZHANG H F, et al. Ice- and MOF-templated porous carbonaceous monoliths for adsorptive removal of dyes in water with easy recycling[J]. Environmental Research,2020,186:109608. doi: 10.1016/j.envres.2020.109608
    [42] LI J, GONG J L, ZENG G M, et al. The performance of UiO-66-NH2/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes[J]. Chemosphere,2019,237:124517. doi: 10.1016/j.chemosphere.2019.124517
    [43] CHEN T, JI M, WEN L L, et al. In-situ forming Sub-2 nm hydrous iron oxide particles in MOFs for deep-treatment and high anti-interference in arsenic removal[J]. Chemical Engineering Journal,2022,431:133813. doi: 10.1016/j.cej.2021.133813
    [44] 邓圣, 胡宇晗, 杨昱, 等. 金属有机框架材料吸附去除水中有机砷研究进展[J]. 环境科学研究. https://doi.org/10.13198/j.issn.1001-6929.2022.07.20.

    DENG S, HU Y H, YANG Y, et al. Research progress in adsorption removal of organic arsenic from water by metal-organic frameworks materials[J]. Research of Environmental Sciences. https://doi.org/10.13198/j.issn.1001-6929.2022.07.20.
    [45] 周琪琪, 王学谦, 宁平, 等.FeCl3改性MOFs在低温下对Hg0的吸附性能[J]. 环境科学研究,2018,31(3):528-536.

    ZHOU Q Q, WANG X Q, NING P, et al. Adsorption performance of elemental mercury on MOFs modified with FeCl3 at low temperatures[J]. Research of Environmental Sciences,2018,31(3):528-536.
    [46] TAN F C, LIU M, LI K Y, et al. Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue[J]. Chemical Engineering Journal,2015,281:360-367. doi: 10.1016/j.cej.2015.06.044
    [47] CHEN Q, HE Q Q, LÜ M M, et al. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Applied Surface Science,2015,327:77-85. doi: 10.1016/j.apsusc.2014.11.103
    [48] BAI Z Y, LIU Q, ZHANG H S, et al. Anti-biofouling and water-stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater[J]. ACS Applied Materials & Interfaces,2020,12(15):18012-18022.
    [49] CEN S H, LÜ X G, JIANG Y L, et al. Synthesis and structure of iron-copper/hollow magnetic/metal-organic framework/coordination sites in a heterogeneous catalyst for a Fenton-based reaction[J]. Catalysis Science & Technology,2020,10(19):6687-6693.
    [50] DU A F, FU H F, WANG P, et al. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx-CuSx derived from ZIF-L(Co) immobilized on copper foam[J]. Journal of Hazardous Materials,2022,426:128134. doi: 10.1016/j.jhazmat.2021.128134
    [51] ZHAO J J, WEI H X, LIU P S, et al. Activation of peroxymonosulfate by metal-organic frameworks derived Co1+xFe2−xO4 for organic dyes degradation: a new insight into the synergy effect of Co and Fe[J]. Journal of Environmental Chemical Engineering,2021,9(4):105412. doi: 10.1016/j.jece.2021.105412
    [52] FAN Y, LIU Y R, HU X, et al. Preparation of metal organic framework derived materials CoFe2O4@NC and its application for degradation of norfloxacin from aqueous solutions by activated peroxymonosulfate[J]. Chemosphere,2021,275:130059. doi: 10.1016/j.chemosphere.2021.130059
    [53] 王茀学, 王崇臣.金属-有机骨架MIL-88A(Fe)及其复合物的合成与高级氧化降解水体有机污染物的研究进展[J]. 环境科学研究,2021,34(12):2924-2934.

    WANG F X, WANG C C. Fabrication approaches and organic pollutants degradation performances via advanced oxidation processes of MIL-88A(Fe) and its composites[J]. Research of Environmental Sciences,2021,34(12):2924-2934.
    [54] ZHU M P, YANG J C E, DUAN X G, et al. Interfacial CoAl2O4 from ZIF-67@γ-Al2O3 pellets toward catalytic activation of peroxymonosulfate for metronidazole removal[J]. Chemical Engineering Journal,2020,397:125339. ⊗ doi: 10.1016/j.cej.2020.125339
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  227
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07

目录

    /

    返回文章
    返回