留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铅稳定同位素的骆马湖沉积物重金属铅来源解析

张家根 夏建东 陈书琴 武宇圣 庞燕 黄天寅

张家根,夏建东,陈书琴,等.基于铅稳定同位素的骆马湖沉积物重金属铅来源解析[J].环境工程技术学报,2023,13(3):1011-1020 doi: 10.12153/j.issn.1674-991X.20220454
引用本文: 张家根,夏建东,陈书琴,等.基于铅稳定同位素的骆马湖沉积物重金属铅来源解析[J].环境工程技术学报,2023,13(3):1011-1020 doi: 10.12153/j.issn.1674-991X.20220454
ZHANG J G,XIA J D,CHEN S Q,et al.Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes[J].Journal of Environmental Engineering Technology,2023,13(3):1011-1020 doi: 10.12153/j.issn.1674-991X.20220454
Citation: ZHANG J G,XIA J D,CHEN S Q,et al.Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes[J].Journal of Environmental Engineering Technology,2023,13(3):1011-1020 doi: 10.12153/j.issn.1674-991X.20220454

基于铅稳定同位素的骆马湖沉积物重金属铅来源解析

doi: 10.12153/j.issn.1674-991X.20220454
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07301-006-06)
详细信息
    作者简介:

    张家根(1998—),男,硕士研究生,主要从事湖泊水污染控制研究,1011559275@qq.com

    通讯作者:

    庞燕(1970—),女,研究员,主要从事湖泊水污染控制及生态修复研究,190068749@qq.com

  • 中图分类号: X524

Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes

  • 摘要:

    骆马湖作为南水北调东线工程重要的调蓄湖泊和水源地,其水环境安全对于江苏北部乃至南水北调东线工程的影响深远。通过对骆马湖湖区及入湖河段表层沉积物、湖周地区环境中潜在污染源土壤的Pb浓度和Pb同位素组成进行分析,评估Pb的空间分布;利用富集系数法进行Pb生态风险评价,结合二元线性混合模型进行湖区表层沉积物Pb来源解析,并计算各污染源的相对贡献率。结果表明:骆马湖表层沉积物中Pb浓度为8.09~27.97 mg/kg,平均值为20.94 mg/kg,Pb污染程度为清洁~轻度富集,表层沉积物Pb污染主要集中在东部和北部湖区;表层沉积物Pb同位素中206Pb/207Pb与208Pb/(206Pb+207Pb)(丰度之比)分别为1.170~1.249和1.125~1.131,Pb污染主要来源于老沂河和以渔业养殖为主的农业污染的直接排放,农业源的相对贡献率为46.71%。为防控骆马湖水环境中Pb的污染风险,需加强对渔业养殖的规范化管理和入湖河流的污染管控。

     

  • 图  1  骆马湖水系

    Figure  1.  Water system map of Luoma Lake

    图  2  骆马湖表层沉积物采样点分布

    Figure  2.  Distribution of surface sediment sampling sites in Luoma Lake

    图  3  骆马湖表层沉积物Pb浓度及EF

    Figure  3.  Pb content and enrichment coefficient in surface sediments of Luoma Lake

    图  4  骆马湖表层沉积物中Pb浓度空间分布

    Figure  4.  Spatial distribution of Pb concentration in surface sediments of Luoma Lake

    图  5  骆马湖表层沉积物与湖周潜在污染源土壤中Pb同位素组成对比

    Figure  5.  Comparison of Pb isotopic composition between surface sediments and peri-lacustrine potential pollution source soils in Luoma Lake

    图  6  骆马湖表层沉积物各采样点Q型聚类分析等级树形

    Figure  6.  Q-type cluster analysis hierarchical tree of surface sediment sampling sitets of Luoma Lake

    图  7  骆马湖各采样点表层沉积物中Pb主要污染源贡献率

    Figure  7.  Contribution rate of Pb main pollution sources in surface sediment of each sampling site in Luoma Lake

    表  1  骆马湖与国内其他湖泊表层沉积物中Pb浓度比较

    Table  1.   Comparison of Pb content in surface sediments of Luoma Lake and other lakes in China

    湖泊年份样本数Pb浓度/(mg/kg)文献来源
    骆马湖20183020.94(8.09~27.97)本研究
    洪泽湖20131018.82(12.25~26.54)[34]
    南四湖20053020.05(16.42~22.76)[35]
    高邮湖2012524.87(22.06~29.53)[36]
    东平湖20134422.40(15.90~32.60)[37]
    太湖20114036.60(25.60~45.60)[38]
    洞庭湖20136060.99(9.89~180.56)[39]
    巢湖20112749.80(19.05~89.25)[40]
    鄱阳湖20143872.58(47.0~109.25)[41]
    青海湖20202218.06(5.23~28.83)[42]
    下载: 导出CSV

    表  2  骆马湖湖周潜在污染源土壤中Pb同位素组成

    Table  2.   Pb isotopic composition in soil of potential pollution sources in peri-lacustrine areas of Luoma Lake

    污染源类别208Pb/
    204Pb
    207Pb/
    204Pb
    206Pb/
    204Pb
    208Pb/
    206Pb
    206Pb/
    207Pb
    208Pb/
    (207Pb+ 206Pb)
    农业源畜禽138.77315.62818.5662.0881.1881.134
    畜禽238.67615.64618.5822.0811.1881.130
    渔业139.23515.73419.1962.0441.2201.123
    渔业239.23915.73419.2002.0441.2201.123
    渔业339.86915.79119.6432.0301.2441.125
    渔业439.74115.79419.6522.0221.2441.121
    渔业538.77915.63818.6192.0831.1911.132
    种植139.04315.69018.8932.0661.2041.129
    种植239.04415.69018.8932.0671.2041.129
    平均值39.15515.70519.0272.0581.2111.127
    工业源工厂138.51915.62918.4102.0921.1781.132
    工厂238.39615.62818.3102.0971.1721.131
    工厂338.64115.65118.5632.0821.1861.129
    工厂438.50115.63718.3502.0981.1741.133
    平均值38.51415.63618.4082.0921.1781.131
    交通源公路138.49115.62818.2862.1051.1701.135
    公路238.35715.61018.2072.1071.1661.134
    公路338.42615.61818.2812.1021.1711.134
    公路438.36315.60918.2662.1001.1701.132
    平均值38.40915.61618.2602.1041.1691.134
    生活源生活138.49415.64418.5062.0801.1831.127
    生活238.66515.64618.5842.0811.1931.130
    生活338.88915.62418.5132.1011.1851.139
    生活438.74615.63018.5582.0881.1871.133
    平均值38.69915.63618.5402.0881.1871.132
    其他源水源
    地1
    38.19215.59918.0722.1131.1591.134
    水源
    地2
    38.31515.61118.2152.1031.1671.133
    公园38.25215.57818.0262.1221.1571.138
    平均值38.25315.59618.1042.1131.1611.135
    骆马湖深层
    底泥
    39.93715.79619.6832.0291.2461.126
    下载: 导出CSV

    表  3  骆马湖表层沉积物中Pb同位素组成

    Table  3.   Pb isotopic composition in surface sediments of Luoma Lake

    采样点206Pb/
    204Pb
    207Pb/
    204Pb
    208Pb/
    204Pb
    208Pb/
    206Pb
    206Pb/
    207Pb
    208Pb/
    207Pb+206Pb)
    118.93315.73839.2082.0541.2211.127
    219.54915.76839.4072.0591.2281.128
    318.92415.66239.2322.0431.2051.126
    418.92915.66339.2342.0431.2061.126
    519.23415.74639.4032.0571.2261.128
    619.12915.69939.3672.0541.2221.127
    719.18215.77039.3522.0531.2201.127
    819.31915.71439.3752.0551.2231.128
    919.10815.67439.3322.0511.2171.127
    1019.40515.75839.3952.0571.2251.128
    1119.55115.79139.4242.0591.2281.128
    1218.96615.70839.3612.0541.2211.127
    1319.09515.76939.4242.0591.2281.128
    1419.26015.68439.3592.0541.2211.127
    1519.42015.73639.3982.0571.2251.128
    1619.33715.70439.3412.0521.2181.127
    1718.83215.69639.3112.0501.2151.127
    1818.97615.74939.4072.0581.2261.128
    1919.19915.67339.3412.0521.2191.127
    2019.01415.67039.2742.0471.2101.126
    2119.19715.77539.4152.0581.2271.128
    2219.60715.79239.5132.0601.2301.131
    2318.77315.66339.1772.0401.2011.125
    2419.65315.79339.5612.0611.2311.131
    2519.42915.77139.4002.0571.2261.128
    2619.73915.80439.9972.0741.2491.131
    2718.72715.66238.8392.0261.1961.125
    2818.80215.66339.1572.0371.1961.126
    2918.85915.66339.2232.0371.1971.126
    3018.91615.74539.4192.0601.2171.129
    最大值19.73915.80439.9972.0741.2491.131
    最小值18.72715.66238.8392.0261.1961.125
    平均值19.16915.72439.3552.0531.2191.128
    变异
    系数/%
    1.4560.3040.4460.4470.9520.136
    下载: 导出CSV

    表  4  骆马湖表层沉积物中Pb同位素组成

    Table  4.   Pb isotopic composition in surface sediments of Luoma Lake

    区域数值类别206Pb/
    204Pb
    207Pb/
    204Pb
    208Pb/
    204Pb
    208Pb/
    206Pb
    206Pb/
    207Pb
    208Pb/
    (207Pb+206Pb)
    湖区
    n=30)
    最大值19.73915.80439.9972.0741.2491.131
    最小值18.72715.66238.8392.0261.1961.125
    均值19.16915.72439.3552.0531.2191.128
    沂河
    n=3)
    最大值18.97215.69639.1822.1051.2091.135
    最小值18.28615.62838.4912.0651.1701.127
    均值18.68115.66638.8312.0791.1921.131
    老沂河
    n=3)
    最大值19.14615.72139.2012.0641.2181.127
    最小值18.87615.67938.9612.0471.2041.124
    均值19.01115.70039.0812.0561.2111.126
    中运河
    n=3)
    最大值18.92015.69039.1032.0671.2061.130
    最小值18.88715.67838.9802.0641.2051.128
    均值18.90415.68439.0422.0651.2051.129
    下载: 导出CSV

    表  5  骆马湖表层沉积物中Pb同位素组成与Pb浓度的相关性分析

    Table  5.   Correlation analysis of Pb isotopic composition and Pb content in surface sediments of Luoma Lake

    Pb同位素组成206Pb/204Pb207Pb/204Pb208Pb/204Pb208Pb/206Pb206Pb/207Pb208Pb/(207Pb+206Pb)Pb
    206Pb/204Pb1
    207Pb/204Pb0.746**1
    208Pb/204Pb0.761**0.714**1
    208Pb/206Pb0.763**0.824**0.909**1
    206Pb/207Pb0.821**0.849**0.875**0.963**1
    208Pb/(207Pb+206Pb)0.791**0.837**0.847**0.849**0.842**1
    Pb0.758**0.883**0.824**0.965**0.925**0.876**1
      注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] SANKHLA M S, KUMARI M, NANDAN M, et al. Heavy metals contamination in water and their hazardous effect on human health: a review[J]. International Journal of Current Microbiology and Applied Sciences,2016,5(10):759-766. doi: 10.20546/ijcmas.2016.510.082
    [2] 曾晨, 郭少娟, 杨立新.汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018,8(2):221-230.

    ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018,8(2):221-230.
    [3] 牛硕, 陈卫平, 杨阳, 等.基于文献计量的重金属污染土壤修复材料研究热点和前沿分析[J]. 环境工程技术学报,2023,13(1):303-311.

    NIU S, CHEN W P, YANG Y, et al. Bibliometric analysis of hotspots and frontiers on remediation materials for heavy metal contaminated soils[J]. Journal of Environmental Engineering Technology,2023,13(1):303-311.
    [4] 胡恭任, 于瑞莲, 郑志敏.铅稳定同位素在沉积物重金属污染溯源中的应用[J]. 环境科学学报,2013,33(5):1326-1331.

    HU G R, YU R L, ZHENG Z M. Application of stable lead isotopes in tracing heavy-metal pollution sources in the sediments[J]. Acta Scientiae Circumstantiae,2013,33(5):1326-1331.
    [5] 林承奇, 胡恭任, 于瑞莲.福建九龙江下游潮间带沉积物铅污染及同位素示踪[J]. 中国环境科学,2015,35(8):2503-2510.

    LIN C Q, HU G R, YU R L. Lead pollution and isotopic tracing in intertidal sediments of Jiulong River downstream[J]. China Environmental Science,2015,35(8):2503-2510.
    [6] 林承奇. 九龙江近岸表层沉积物微量元素分布特征及来源解析[D]. 泉州: 华侨大学, 2017.
    [7] 邱敏娴. 泉州湾潮间带沉积物重金属污染及Pb-Sr同位素示踪研究[D]. 泉州: 华侨大学, 2013.
    [8] 余伟河. 九龙江河口沉积物中重金属赋存形态及铅同位素示踪研究[D]. 泉州: 华侨大学, 2013.
    [9] RENBERG I, BRÄNNVALL M L, BINDLER R, et al. Stable lead isotopes and lake sediments: a useful combination for the study of atmospheric lead pollution history[J]. Science of the Total Environment,2002,292(1/2):45-54.
    [10] TOWNSEND A T, SEEN A J. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment[J]. Science of the Total Environment,2012,424:153-161. doi: 10.1016/j.scitotenv.2012.02.011
    [11] HU N J, HUANG P, ZHANG H, et al. Tracing the Pb origin using stable Pb isotope ratios in sediments of Liaodong Bay, China[J]. Continental Shelf Research,2015,111:268-278. doi: 10.1016/j.csr.2015.08.029
    [12] SUN G X, WANG X J, HU Q H. Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China[J]. Environmental Pollution,2011,159(12):3406-3410. doi: 10.1016/j.envpol.2011.08.037
    [13] 朱赖民, 张海生, 陈立奇.铅稳定同位素在示踪环境污染中的应用[J]. 环境科学研究,2002,15(1):27-30.

    ZHU L M, ZHANG H S, CHEN L Q. Application of stable lead isotope in trace for environmental pollution[J]. Research of Environmental Sciences,2002,15(1):27-30.
    [14] 马文娟, 刘丹妮, 杨芳, 等.水环境中污染物同位素溯源的研究进展[J]. 环境工程技术学报,2020,10(2):242-250.

    MA W J, LIU D N, YANG F, et al. Research progress in isotope methods for tracing contaminants in water environment[J]. Journal of Environmental Engineering Technology,2020,10(2):242-250.
    [15] 王伟, 樊祥科, 黄春贵, 等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3): 494-501.

    WANG W, FAN X K, HUANG C G, et al. Monitoring and comparison analysis of heavy metals in the five great lakes in Jiangsu Province[J]. Journal of Lake Sciences, 2016, 28(3): 494-501.
    [16] 王永平, 洪大林, 申霞, 等.骆马湖沉积物重金属及营养盐污染研究[J]. 南水北调与水利科技,2013,11(6):45-48.

    WANG Y P, HONG D L, SHEN X, et al. Heavy metals and nutrients pollution in sediments of Luoma Lake[J]. South-to-North Water Transfers and Water Science & Technology,2013,11(6):45-48.
    [17] 李文博, 林建宇, 周强, 等.骆马湖现代沉积物137Cs和210Pbex的测定分析与环境指示意义[J]. 环境监测管理与技术,2021,33(5):41-45.

    LI W B, LIN J Y, ZHOU Q, et al. Determination and environmental implications of 137Cs and 210Pbex in modern sediment from Luoma Lake[J]. The Administration and Technique of Environmental Monitoring,2021,33(5):41-45.
    [18] 夏建东. 骆马湖沉积物重金属环境行为及源解析研究[D]. 安庆: 安庆师范大学, 2020.
    [19] 申霞, 洪大林, 谈永锋, 等.骆马湖生态环境现状及其保护措施[J]. 水资源保护,2013,29(3):39-43.

    SHEN X, HONG D L, TAN Y F, et al. Ecological environment of Luoma Lake and protection measures[J]. Water Resources Protection,2013,29(3):39-43.
    [20] 王庚, 彭婧, 史红星, 等.电感耦合等离子体质谱同时测定沉积物中12种重金属元素[J]. 环境化学,2011,30(11):1944-1948.

    WANG G, PENG J, SHI H X, et al. Simultaneous determination of twelve heavy metals in sediment by ICP-MS[J]. Environmental Chemistry,2011,30(11):1944-1948.
    [21] 宣肇菲, 徐少才, 房贤文, 等.四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试,2015,34(6):617-622.

    XUAN Z F, XU S C, FANG X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis,2015,34(6):617-622.
    [22] 江春霞, 彭渤, 方小红, 等.沅江入湖段河床沉积物重金属污染源的铅同位素示踪[J]. 环境科学学报,2022,42(4):225-236.

    JIANG C X, PENG B, FANG X H, et al. Lead isotopic tracing on source of heavy metal contamination in sediments from the Yuanjiang River inlet to Dongting Lake, China[J]. Acta Scientiae Circumstantiae,2022,42(4):225-236.
    [23] 张俊, 刘季花, 张辉, 等.黄河入海口湿地区底质重金属污染的Pb同位素示踪[J]. 海洋科学进展,2014,32(4):491-500.

    ZHANG J, LIU J H, ZHANG H, et al. Pollutions from heavy metals in the surface sediments in the wetland region of the Yellow River Estuary: lead isotopic tracer[J]. Advances in Marine Science,2014,32(4):491-500.
    [24] 胡忻, 曹密.南京市内河道沉积物中重金属元素形态及Pb稳定同位素组成[J]. 环境科学研究,2009,22(4):398-403.

    HU X, CAO M. Speciation of heavy metals and Pb stable isotope signatures in urban channel sediments in Nanjing[J]. Research of Environmental Sciences,2009,22(4):398-403.
    [25] 赵斌, 朱四喜, 杨秀琴, 等.草海湖沉积物中重金属污染现状及生态风险评价[J]. 环境科学研究,2019,32(2):235-245.

    ZHAO B, ZHU S X, YANG X Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake[J]. Research of Environmental Sciences,2019,32(2):235-245.
    [26] N'GUESSAN Y M, PROBST J L, BUR T, et al. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from[J]. Science of the Total Environment,2009,407(8):2939-2952. doi: 10.1016/j.scitotenv.2008.12.047
    [27] PENG B, TANG X Y, YU C X, et al. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P. R. China): implications on sources of trace metals[J]. Environmental Earth Sciences,2011,64(5):1455-1473. doi: 10.1007/s12665-011-0969-0
    [28] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology,2000,39(6):611-627. doi: 10.1007/s002540050473
    [29] 于瑞莲, 胡恭任, 袁星, 等.同位素示踪技术在沉积物重金属污染溯源中的应用[J]. 地球与环境,2008,36(3):245-250.

    YU R L, HU G R, YUAN X, et al. Application of isotope tracing technique in the recognition of pollution sources by heavy metals in sediments[J]. Earth and Environment,2008,36(3):245-250.
    [30] 廖启林, 刘聪, 许艳, 等.江苏省土壤元素地球化学基准值[J]. 中国地质,2011,38(5):1363-1378.

    LIAO Q L, LIU C, XU Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China,2011,38(5):1363-1378.
    [31] 李爱花. 南水北调东线工程蓄水系统运行风险分析[D]. 南京: 南京水利科学研究院, 2009.
    [32] 刘阁阁. 天津海岸带沉积物铅锶同位素特征及其环境学意义[D]. 北京: 中国地质大学(北京), 2019.
    [33] 尚英男. 土壤-植物的重金属污染特征及铅同位素示踪研究: 以成都经济区典型城市为例[D]. 成都: 成都理工大学, 2007.
    [34] 余辉, 张文斌, 余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J]. 环境科学,2011,32(2):437-444.

    YU H, ZHANG W B, YU J P. Distribution and potential ecological risk assessment of heavy metals in surface sediments of Hongze Lake[J]. Environmental Science,2011,32(2):437-444.
    [35] 杨丽原, 沈吉, 张祖陆, 等.近四十年来山东南四湖环境演化的元素地球化学记录[J]. 地球化学,2003,32(5):453-460.

    YANG L Y, SHEN J, ZHANG Z L, et al. A 40-year element geochemical record and its environment implication in Lake Nansihu, Shandong Province[J]. Geochimica,2003,32(5):453-460.
    [36] 陈乾坤, 刘涛, 胡志新, 等.江苏省西部湖泊表层沉积物中重金属分布特征及其潜在生态风险评价[J]. 农业环境科学学报,2013,32(5):1044-1050.

    CHEN Q K, LIU T, HU Z X, et al. Distribution and ecological risk assessment of heavy metals in surface sediments from the lakes of west Jiangsu Province[J]. Journal of Agro-Environment Science,2013,32(5):1044-1050.
    [37] 张菊, 何振芳, 董杰, 等.东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报,2016,25(10):1699-1706.

    ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences,2016,25(10):1699-1706.
    [38] YUAN H Z, SHEN J, LIU E F, et al. Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China[J]. Environmental Geochemistry and Health,2011,33(1):67-81. doi: 10.1007/s10653-010-9323-9
    [39] LI F, HUANG J H, ZENG G M, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China[J]. Journal of Geochemical Exploration,2013,132:75-83. doi: 10.1016/j.gexplo.2013.05.007
    [40] YIN H B, DENG J C, SHAO S G, et al. Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China[J]. Environmental Monitoring and Assessment,2011,179(1):431-442.
    [41] 伍恒赟, 罗勇, 张起明, 等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测,2014,30(6):114-119.

    WU H Y, LUO Y, ZHANG Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China,2014,30(6):114-119.
    [42] 张雅然. 青海湖流域沉积物重金属分布特征与生态风险评价[D]. 北京: 华北电力大学(北京), 2022.
    [43] 纪小敏, 马倩, 董家根, 等.江苏省入骆马湖污染物总量分析[J]. 江苏水利,2010(10):44-46.
    [44] 李褆来, 曲红玲, 陈黎明, 等.骆马湖水位动库容分析[J]. 中国科技论文,2012,7(5):372-376.

    LI T L, QU H L, CHEN L M, et al. Analysis of water level and dynamic capacity of Luoma Lake[J]. China Sciencepaper,2012,7(5):372-376. ◇
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  125
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11

目录

    /

    返回文章
    返回