Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes
-
摘要:
骆马湖作为南水北调东线工程重要的调蓄湖泊和水源地,其水环境安全对于江苏北部乃至南水北调东线工程的影响深远。通过对骆马湖湖区及入湖河段表层沉积物、湖周地区环境中潜在污染源土壤的Pb浓度和Pb同位素组成进行分析,评估Pb的空间分布;利用富集系数法进行Pb生态风险评价,结合二元线性混合模型进行湖区表层沉积物Pb来源解析,并计算各污染源的相对贡献率。结果表明:骆马湖表层沉积物中Pb浓度为8.09~27.97 mg/kg,平均值为20.94 mg/kg,Pb污染程度为清洁~轻度富集,表层沉积物Pb污染主要集中在东部和北部湖区;表层沉积物Pb同位素中206Pb/207Pb与208Pb/(206Pb+207Pb)(丰度之比)分别为1.170~1.249和1.125~1.131,Pb污染主要来源于老沂河和以渔业养殖为主的农业污染的直接排放,农业源的相对贡献率为46.71%。为防控骆马湖水环境中Pb的污染风险,需加强对渔业养殖的规范化管理和入湖河流的污染管控。
Abstract:As an important storage lake and water source of the east route of South-to-North Water Transfer Project, Luoma Lake's water environment safety has a far-reaching impact on northern Jiangsu and even the east route of South-to-North Water Transfer Project. By analyzing the Pb content and Pb isotopic composition of the surface sediments of Luoma Lake and rivers into the lake, and the soil of potential pollution sources in the surrounding areas, the spatial distribution of lead was evaluated. The ecological risk assessment of heavy metal Pb was carried out by using the enrichment coefficient method, and the binary linear mixed model was applied to analyze the polluting sources and calculate the relative contribution rate of each source. The results showed that the content of Pb in surface sediments of Luoma Lake ranged from 8.09 to 27.97 mg/kg, with an average of 20.94 mg/kg, and Pb in surface sediments of Luoma Lake showed a clean-slight pollution level. Spatial analysis showed that Pb pollution of surface sediments in Luoma Lake was mainly concentrated in the eastern and northern lakes. The values of 206Pb/207Pb and 208Pb/(206Pb+207Pb) (the ratios of abundance) in the surface sediments of Luoma Lake were 1.170-1.249 and 1.125-1.131, respectively, and the Pb pollution mainly came from the Laoyi River and the direct discharge of agricultural pollution from fishery farming. The relative contribution rate of agricultural sources was 46.71%. In order to prevent and control the pollution risk of Pb in Luoma Lake water environment, it was necessary to strengthen the standardized management of fishery culture and the pollution control of rivers entering the lake.
-
Keywords:
- lead isotope /
- Luoma Lake /
- sediment /
- heavy metals /
- source analysis
-
铅(Pb)作为一种毒性较高的重金属,因其易累积、富集并且具有持久性等特点,进入湖泊水体后易通过水产品等途径进入人体,危害人类身体健康,同时因其无法被微生物降解,并且生物半衰期较长[1-2],引起了国内外重金属研究学者的广泛关注[3]。Pb同位素主要有4种,分别为208Pb、207Pb、206Pb和204Pb,其中204Pb为稳定Pb同位素,而208Pb、207Pb、206Pb这3种Pb同位素的结构组成不受重金属迁移转化的影响,只受来源区域Pb同位素组成特征的影响,具有特殊的指证功能[4-6]。Pb同位素质量大,各类同位素间原子质量差异较小,其组成受外界条件的影响也较小,因此具备污染源区的特征及相应的地球化学指纹作用[6-8]。国外已有许多研究利用Pb同位素示踪作用对湖泊水环境沉积物中Pb进行溯源,如Renberg等[9]研究了瑞典湖泊沉积物中Pb浓度及Pb同位素组成,对湖泊沉积物中Pb进行溯源并计算各污染源的相对贡献率;Townsend等[10]研究了澳大利亚亚德文特河沉积物中Pb同位素比值组成,认为该河沉积物中Pb主要来自于附近矿区的开采。国内有关以Pb同位素示踪对重金属污染溯源的研究开展得较晚,如Hu等[11]研究了九龙江河口表层沉积物中Pb浓度,并分析Pb同位素组成中208Pb、207Pb、206Pb的丰度比,得出Pb污染主要受燃煤和工业活动及污水排放的影响;Sun等[12]研究了湖南湘江和丽水沉积物重金属污染及Pb同位素组成,认为其重金属污染主要与附近大量采矿活动有关。综上,利用Pb浓度及其同位素丰度比可有效辨别污染程度和污染范围,精准示踪污染途径和污染方式,因此Pb同位素示踪在追踪沉积物重金属污染来源和评价污染程度方面已成为行之有效的方法之一,为环境系统污染物源解析提供了新的途径[13-14]。
骆马湖是南水北调东线工程的重要调蓄库,也是周边地区主要的水源地,具有防洪排涝、灌溉供水、航运及养殖等多种功能,骆马湖水环境安全对于江苏北部乃至南水北调东线工程的影响深远。已有研究显示骆马湖的水质不容乐观,近年来入湖河口区域沉积物中Cd、Cr、Zn等重金属蓄积量出现较大幅度的增加[15]。目前对于骆马湖沉积物中重金属的研究多集中在浓度分析、空间分布及风险评估等方面。如王永平等[16]采集骆马湖沉积物柱状样,分析重金属空间分布,提出湖心区域受重金属污染较重;李文博等[17]对骆马湖进出湖口及湖心区采用210Pb技术定年分析,认为重金属污染程度逐年递增。目前,骆马湖沉积物中重金属污染源解析的研究仍比较缺乏。笔者以骆马湖为研究对象,分析骆马湖表层沉积物及其周边区域环境中潜在污染源的Pb同位素组成,对Pb进行风险评价,并利用Pb同位素指纹特征辨识沉积物中Pb污染来源,以期为湖区重金属污染防治提供理论依据。
1. 研究区概况与研究方法
1.1 研究区域概况
骆马湖地处江苏省北部,沂沭泗水系下游,为徐州、宿迁2市共辖,汇水面积为287 km2,是淮河流域第三大湖泊,江苏省第四大湖泊。骆马湖周围地区水系发达,中运河、沂河及老沂河是北部主要入湖河流[18],宿迁及周边县市处于骆马湖的上游,区域内的工业、生活、农业污染源经部分处理后,排入中运河(北)、沂河及老沂河,最终进入骆马湖,出湖河流主要为中运河(南)及东部的新沂河。骆马湖属于典型的过水性湖泊,北接南四湖、南连洪泽湖,贯通淮河、长江等水系(图1)。湖区主要渔业养殖方式为网围、网箱养殖,现有网围面积约3 128 hm2、网箱面积约50 hm2,年养殖增产量约0.9万t[19],渔业养殖区域总面积约占湖区面积的11%[15],主要集中分布在东部和北部湖区。
1.2 样品采集与预处理
于2018年10—11月分别采集骆马湖表层沉积物及入湖河流〔沂河、中运河(北)与老沂河〕的入湖河口段表层沉积物样品〔中运河(南)和新沂河为骆马湖出湖河流,不采样〕。湖区采样参照网格法,并结合骆马湖水文特征及湖区实地考察情况,共布置30个采样点(图2);入湖河口段采样以河口为起点,向上游分别于2、4、6 km各布设1个采样点,共设9个采样点。在上述采样点用彼德森采泥器采集表层沉积物样品。其中,在湖心采样点16、19处,除采集表层沉积物样品外,还用柱状采泥器采集30~50 cm的深层底泥样品。将采集的沉积物样品装入黑色塑料袋中,置于−20 ℃冷冻,冷冻后的沉积物经干燥晾干,研磨过100、200目筛后,分别用于Pb浓度和Pb同位素的测定。
调查骆马湖湖周环境发现,骆马湖Pb的主要潜在污染源包括:1)渔业、种植、畜禽等农业生产排放,其中以渔业为主;2)周边船厂等工业企业排放;3)周边环湖道路桥梁上汽车尾气的交通排放;4)湖周生活污水的排放;5)水源地及公园绿地中各类污水的排放。环湖采集骆马湖湖周地区这5类潜在污染源不同功能类型区域代表位置土壤样品,长距离相同功能区采取适当加设采样点的方式以增加样品代表性,其中采集农业源9个样品(包括畜禽、渔业、种植区土壤),工业源4个样品(主要为工厂区土壤),交通源4个样品(公路土壤),生活源4个样品,其他源3个样品(水源地及公园土壤)。这些样品的预处理及Pb同位素测定方法同骆马湖沉积物样品。
1.3 Pb浓度及同位素组成测定
沉积物中Pb浓度测定:精确称取0.100 g过100目筛干燥处理后的沉积物样品,置于微波消解管中,加入5 mL HNO3和1 mL H2O2后在微波消解仪进行消解;消解后将消解管放入赶酸仪于150 ℃进行赶酸,当消解液近干时取出,冷却加入2%硝酸,分多次移入50 mL容量瓶中定容至刻度;封盖后摇匀静置过夜,取上清液过0.45 μm纤维膜后,置于5 mL冻存管中,用ICP-MS(ELAN 6000,美国珀金埃尔默公司)检测。通过水系沉积物国家标准GSMS-2和平行样进行质量控制,标样多次连续测试的相对标准偏差均小于2%[18,20-21]。同时对沉积物中Fe浓度进行测定,Fe作为参比元素用于风险评价(Fe浓度测定方法与Pb同)。
Pb同位素组成测定:准确称取0.200 g过200目筛干燥处理后的沉积物样品置于Teflon瓶中,加入HF-HClO4-HNO3酸体系后置于加热板上进行熔样,再经过AGL8阴离子交换树脂分离纯化,并用2%硝酸溶解,使用MC-ICP-MS(Neptune plus型,Thermo Fisher Scientific公司)测定。样品测定以205Tl/203Tl为内标,以NBS981为标准物质,标样的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb推荐值依次为18.870±0.006、15.619±0.003、38.546±0.012,实测值依次为18.880 0±0.001 1、15.724 0±0.000 9、39.355 0±0.000 1,仪器精密度控制在0.5%以内[22-24]。
1.4 重金属生态风险评价方法
富集系数(EF)法是用于判断环境介质中元素污染程度的评价方法,EF可用于评估沉积物中重金属的富集程度[25],具体计算公式为:
$$\text{E}\text{F}\text=\frac{{\text{(}{{X}}_{i}\text{/}{{X}}_{\text{r}}\text{)}}_{\text{s}}}{{\text{(}{{X}}_{{i}}\text{/}{{X}}_{\text{r}}\text{)}}_{\text{b}}} $$ (1) 式中:Xi为重金属i的浓度,mg/kg;Xr为参比元素浓度,mg/kg;s、b分别表示样品检测值和背景值。参比元素的选取应满足在风化、沉积等表生过程中化学性质稳定等条件,实际应用中常作为参比元素的有Al、Cs、Zr、Nb、Y、Li、Fe、Sc、Co等[26-27]。将EF分为4个污染等级[28],即EF≥1、1<EF≤2、2<EF≤3及EF>3分别对应于清洁、轻度富集、中度富集及重度富集。
1.5 Pb同位素溯源法
Pb同位素溯源通常分为定性分析和定量分析。206Pb/207Pb和208Pb/(206Pb+207Pb)为Pb同位素组成中206Pb、207Pb、208Pb这3种Pb同位素之间的丰度比关系,用其作图(x-y)可对比分析污染源间Pb同位素组成,辨别其差异性,并对污染源进行初步识别。将沉积物样品的Pb同位素丰度比与在污染源头采集样品的Pb同位素丰度比进行比对,相符合的即表示来自相应污染源。于瑞莲等[29]对沉积物各Pb同位素丰度比与Pb浓度进行相关性分析得出沉积物各Pb同位素丰度比之间及其与Pb浓度的关系;胡恭任等[4]提出Pb同位素丰度比206Pb/207Pb、208Pb/(206Pb+207Pb)和Pb浓度为聚类分析的依据,并在研究中对沉积物采样点进行Q型聚类分析,以了解不同采样点Pb的来源及其各类来源的相似性。综上可知,多元统计方法分析与同位素溯源相结合可以更准确识别污染源。
定量分析是在定性分析的基础上,结合计算模型识别污染源并计算出各污染源的相对贡献率[6],具体运用二元线性混合模型来计算某类人为源和自然源对沉积物中Pb的贡献率,基本计算公式如下[5,18]:
$$ {F}\text=\frac{{^{\text{206}}{\text{Pb}}\text{/}{^{\text{207}}}{\text{Pb}_{\text{s}}}}-{^{\text{206}}{\text{Pb}}\text{/}{^{\text{207}}}{\text{Pb}_{\text{b}}}}}{{^{\text{206}}{\text{Pb}}\text{/}{^{\text{207}}}{\text{Pb}_{\text{a}}}}-{^{\text{206}}{\text{Pb}}\text{/}{^{\text{207}}}{\text{Pb}_\text{b}}}}$$ (2) 式中:F为各污染源对Pb的贡献率;206Pb/207Pbs为各污染源土壤测定所得的206Pb和207Pb丰度比;206Pb/207Pba为各污染源土壤测定所得的206Pb和207Pb丰度比的平均值;206Pb/207Pbb为区域土壤Pb同位素背景值丰度比,由于研究区背景值缺乏,将骆马湖深层底泥的206Pb/207Pb作为背景值。
2. 结果与讨论
2.1 湖区表层沉积物Pb浓度及生态风险评价
骆马湖表层沉积物中Pb浓度见图3。骆马湖表层沉积物Pb浓度为8.09~27.97 mg/kg,平均值为20.94 mg/kg,43.3%的采样点超过江苏省土壤Pb的背景值[5,30](22 mg/kg),其中Pb浓度最高点(采样点26)达到背景值的1.27倍。将骆马湖沉积物中Pb浓度与国内其他湖泊进行对比(表1)可知,骆马湖表层沉积物中Pb浓度除略高于青海湖外,均比太湖、巢湖、洞庭湖、鄱阳湖等国内大型淡水湖泊低,在南水北调东线工程沿线的重要湖泊中位居中游[31]。
对骆马湖表层沉积物中Pb进行风险评估,由于本研究测定Fe在沉积物中的浓度较稳定且接近于江苏省土壤Fe背景值,所以采用EF法进行沉积物中重金属风险评估时将参比元素设为Fe,用于评估Pb的富集程度(图3)。沉积物中Pb的EF为0.37~1.27,平均值为0.95,根据EF对元素富集程度的评价标准,骆马湖表层沉积物样品整体上表现为清洁~轻度富集,其中43.3%的沉积物样品中Pb存在轻度富集(1<EF≤2)。
2.2 湖周潜在污染源土壤与湖区表层沉积物中Pb同位素组成
2.2.1 湖周潜在污染源土壤中Pb同位素组成
由于大多数研究中检测出204Pb丰度普遍较低,208Pb/204Pb、206Pb/204Pb和207Pb/204Pb易受到其他因素的影响而最终偏离真实值,所以208Pb/204Pb、206Pb/204Pb和207Pb/204Pb很难有效反映骆马湖沉积物中Pb的变化态势及准确推断污染源组成,因此,本研究采用较稳定且精确度较高的206Pb/207Pb和208Pb/(206Pb+207Pb)进行Pb同位素溯源[4,6,8,32-33]。骆马湖湖周各潜在污染源土壤中Pb同位素组成测定结果见表2。由表2可知,湖周农业、工业、交通、生活和其他这5类潜在污染源土壤的Pb同位素组成中,206Pb/207Pb平均值(分布范围)分别为1.211(1.188~1.244)、1.178(1.172~1.186)、1.169(1.166~1.171)、1.186(1.183~1.188)和1.161(1.157~1.167),208Pb/(206Pb+207Pb)平均值(分布范围)分别为1.127(1.121~1.134)、1.131(1.129~1.133)、1.134(1.132~1.135)、1.132(1.127~1.139)和1.135(1.133~1.138)。其中农业源土壤具有最高的206Pb/207Pb和最低的208Pb/(206Pb+207Pb)。农业源土壤的Pb同位素组成中206Pb/207Pb和208Pb/(206Pb+207Pb)与另外4类潜在污染源存在明显差异,可通过这2类Pb同位素的比值差异来区分不同农业源土壤的Pb[4-5]。
表 1 骆马湖与国内其他湖泊表层沉积物中Pb浓度比较Table 1. Comparison of Pb content in surface sediments of Luoma Lake and other lakes in China湖泊 年份 样本数 Pb浓度/(mg/kg) 文献来源 骆马湖 2018 30 20.94(8.09~27.97) 本研究 洪泽湖 2013 10 18.82(12.25~26.54) [34] 南四湖 2005 30 20.05(16.42~22.76) [35] 高邮湖 2012 5 24.87(22.06~29.53) [36] 东平湖 2013 44 22.40(15.90~32.60) [37] 太湖 2011 40 36.60(25.60~45.60) [38] 洞庭湖 2013 60 60.99(9.89~180.56) [39] 巢湖 2011 27 49.80(19.05~89.25) [40] 鄱阳湖 2014 38 72.58(47.0~109.25) [41] 青海湖 2020 22 18.06(5.23~28.83) [42] 表 2 骆马湖湖周潜在污染源土壤中Pb同位素组成Table 2. Pb isotopic composition in soil of potential pollution sources in peri-lacustrine areas of Luoma Lake污染源类别 208Pb/
204Pb207Pb/
204Pb206Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+ 206Pb)农业源 畜禽1 38.773 15.628 18.566 2.088 1.188 1.134 畜禽2 38.676 15.646 18.582 2.081 1.188 1.130 渔业1 39.235 15.734 19.196 2.044 1.220 1.123 渔业2 39.239 15.734 19.200 2.044 1.220 1.123 渔业3 39.869 15.791 19.643 2.030 1.244 1.125 渔业4 39.741 15.794 19.652 2.022 1.244 1.121 渔业5 38.779 15.638 18.619 2.083 1.191 1.132 种植1 39.043 15.690 18.893 2.066 1.204 1.129 种植2 39.044 15.690 18.893 2.067 1.204 1.129 平均值 39.155 15.705 19.027 2.058 1.211 1.127 工业源 工厂1 38.519 15.629 18.410 2.092 1.178 1.132 工厂2 38.396 15.628 18.310 2.097 1.172 1.131 工厂3 38.641 15.651 18.563 2.082 1.186 1.129 工厂4 38.501 15.637 18.350 2.098 1.174 1.133 平均值 38.514 15.636 18.408 2.092 1.178 1.131 交通源 公路1 38.491 15.628 18.286 2.105 1.170 1.135 公路2 38.357 15.610 18.207 2.107 1.166 1.134 公路3 38.426 15.618 18.281 2.102 1.171 1.134 公路4 38.363 15.609 18.266 2.100 1.170 1.132 平均值 38.409 15.616 18.260 2.104 1.169 1.134 生活源 生活1 38.494 15.644 18.506 2.080 1.183 1.127 生活2 38.665 15.646 18.584 2.081 1.193 1.130 生活3 38.889 15.624 18.513 2.101 1.185 1.139 生活4 38.746 15.630 18.558 2.088 1.187 1.133 平均值 38.699 15.636 18.540 2.088 1.187 1.132 其他源 水源
地138.192 15.599 18.072 2.113 1.159 1.134 水源
地238.315 15.611 18.215 2.103 1.167 1.133 公园 38.252 15.578 18.026 2.122 1.157 1.138 平均值 38.253 15.596 18.104 2.113 1.161 1.135 骆马湖深层
底泥39.937 15.796 19.683 2.029 1.246 1.126 2.2.2 湖区表层沉积物中Pb同位素组成
骆马湖表层沉积物Pb同位素组成见表3。沉积物中206Pb/207Pb和208Pb/(206Pb+207Pb)分别为1.196~1.249和1.125~1.131。通过对比湖周潜在污染源土壤和湖区表层沉积物样品中206Pb/207Pb与208Pb/(206Pb+207Pb)可知,湖区表层沉积物样品中206Pb/207Pb和208Pb/(206Pb+207Pb)与交通源、其他源2类潜在污染源土壤样品差异明显,表明骆马湖表层沉积物中Pb污染受交通源、其他源影响不大,但对Pb主要污染源的辨别还需进一步对比分析。
表 3 骆马湖表层沉积物中Pb同位素组成Table 3. Pb isotopic composition in surface sediments of Luoma Lake采样点 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)1 18.933 15.738 39.208 2.054 1.221 1.127 2 19.549 15.768 39.407 2.059 1.228 1.128 3 18.924 15.662 39.232 2.043 1.205 1.126 4 18.929 15.663 39.234 2.043 1.206 1.126 5 19.234 15.746 39.403 2.057 1.226 1.128 6 19.129 15.699 39.367 2.054 1.222 1.127 7 19.182 15.770 39.352 2.053 1.220 1.127 8 19.319 15.714 39.375 2.055 1.223 1.128 9 19.108 15.674 39.332 2.051 1.217 1.127 10 19.405 15.758 39.395 2.057 1.225 1.128 11 19.551 15.791 39.424 2.059 1.228 1.128 12 18.966 15.708 39.361 2.054 1.221 1.127 13 19.095 15.769 39.424 2.059 1.228 1.128 14 19.260 15.684 39.359 2.054 1.221 1.127 15 19.420 15.736 39.398 2.057 1.225 1.128 16 19.337 15.704 39.341 2.052 1.218 1.127 17 18.832 15.696 39.311 2.050 1.215 1.127 18 18.976 15.749 39.407 2.058 1.226 1.128 19 19.199 15.673 39.341 2.052 1.219 1.127 20 19.014 15.670 39.274 2.047 1.210 1.126 21 19.197 15.775 39.415 2.058 1.227 1.128 22 19.607 15.792 39.513 2.060 1.230 1.131 23 18.773 15.663 39.177 2.040 1.201 1.125 24 19.653 15.793 39.561 2.061 1.231 1.131 25 19.429 15.771 39.400 2.057 1.226 1.128 26 19.739 15.804 39.997 2.074 1.249 1.131 27 18.727 15.662 38.839 2.026 1.196 1.125 28 18.802 15.663 39.157 2.037 1.196 1.126 29 18.859 15.663 39.223 2.037 1.197 1.126 30 18.916 15.745 39.419 2.060 1.217 1.129 最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 平均值 19.169 15.724 39.355 2.053 1.219 1.128 变异
系数/%1.456 0.304 0.446 0.447 0.952 0.136 2.3 湖区表层沉积物中Pb污染空间分布及其与入湖河流的关系
2.3.1 湖区表层沉积物中Pb空间分布
骆马湖表层沉积物中Pb浓度分布特征如图4所示。由图4可知,骆马湖表层沉积物中Pb污染较为严重的区域分布在北部及东部湖区。北部湖区表层沉积物中Pb污染一方面可能来源于北部以老沂河为主的入湖河流的Pb输入;另一方面骆马湖渔业养殖面积较大,围网围栏养殖主要分布在北湖、东部湖区,其污染排放是导致Pb污染的重要因素。骆马湖表层沉积物中Pb的污染来源还有待进一步通过Pb同位素组成的对比分析来验证。
2.3.2 湖区与入湖河口段沉积物Pb同位素组成对比
骆马湖陆域污染物主要来源于北部的中运河、沂河和老沂河输入,由骆马湖表层沉积物中Pb同位素组成(表4)可知,与沂河、中运河相比,老沂河的206Pb/207Pb(1.211)与湖区表层沉积物的206Pb/207Pb(1.219)较接近。老沂河是骆马湖北部主要的入湖河道,年平均入湖水量达到35.21亿m3,占总入湖水量的24.5%[43],因此可以推断骆马湖表层沉积物中Pb的输入受老沂河的影响较大。
表 4 骆马湖表层沉积物中Pb同位素组成Table 4. Pb isotopic composition in surface sediments of Luoma Lake区域 数值类别 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)湖区
(n=30)最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 均值 19.169 15.724 39.355 2.053 1.219 1.128 沂河
(n=3)最大值 18.972 15.696 39.182 2.105 1.209 1.135 最小值 18.286 15.628 38.491 2.065 1.170 1.127 均值 18.681 15.666 38.831 2.079 1.192 1.131 老沂河
(n=3)最大值 19.146 15.721 39.201 2.064 1.218 1.127 最小值 18.876 15.679 38.961 2.047 1.204 1.124 均值 19.011 15.700 39.081 2.056 1.211 1.126 中运河
(n=3)最大值 18.920 15.690 39.103 2.067 1.206 1.130 最小值 18.887 15.678 38.980 2.064 1.205 1.128 均值 18.904 15.684 39.042 2.065 1.205 1.129 2.4 湖区表层沉积物中Pb污染来源识别及其贡献率
2.4.1 湖区表层沉积物中Pb来源识别
骆马湖表层沉积物中Pb污染除受入湖河流影响外,可能还受湖区人为活动的影响,对湖区表层沉积物与湖周潜在污染源土壤中206Pb/207Pb和208Pb/(206Pb+207Pb)进行对比,结果如图5所示。由图5可知,骆马湖表层沉积物中Pb的同位素组成被农业源土壤所覆盖,判断骆马湖沉积物中Pb受到农业活动的影响较大;另外,采样点3、4、20、23、27~29的Pb同位素组成不仅与农业源相关,还与部分工业及生活源土壤的Pb同位素组成较接近,说明骆马湖表层沉积物中Pb也有部分来源于工业和生活;交通源、其他源土壤的Pb同位素组成与湖区各采样点沉积物的Pb同位素组成相差较大,说明其对沉积物中Pb污染的影响较小。
骆马湖表层沉积物中Pb同位素组成与Pb浓度相关性分析(表5)表明,206Pb/207Pb与208Pb/(206Pb+207Pb)呈显著正相关。以沉积物中Pb浓度、206Pb/207Pb和208Pb/(206Pb+207Pb)为聚类分析依据,对30个采样点进行Q型聚类分析,了解不同采样点Pb的来源及其来源的相似性,聚类分析结果见图6。
表 5 骆马湖表层沉积物中Pb同位素组成与Pb浓度的相关性分析Table 5. Correlation analysis of Pb isotopic composition and Pb content in surface sediments of Luoma LakePb同位素组成 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/206Pb 206Pb/207Pb 208Pb/(207Pb+206Pb) Pb 206Pb/204Pb 1 207Pb/204Pb 0.746** 1 208Pb/204Pb 0.761** 0.714** 1 208Pb/206Pb 0.763** 0.824** 0.909** 1 206Pb/207Pb 0.821** 0.849** 0.875** 0.963** 1 208Pb/(207Pb+206Pb) 0.791** 0.837** 0.847** 0.849** 0.842** 1 Pb 0.758** 0.883** 0.824** 0.965** 0.925** 0.876** 1 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 由图6可知,聚类的第一类可分为3个小类,第一小类包括采样点2、11、13、21、22、24、26、30,主要分布在骆马湖入河流老沂河、新沂河及中运河南段,受沿线农业生产影响较大[44];第二小类包括采样点5、10、15、18、25,与第一小类情况类似,其污染来源主要为农业活动;第三小类包含采样点1、6~9、12、14、16、17、19,主要分布在骆马湖北部和东部湖区,该区域渔业及畜禽养殖产业较多,农业排放对于Pb污染影响较大。综上,第一类主要污染源为农业。第二类包括采样点3、4、20、23、27~29,其污染来源不仅有农业,还在一定程度上受生活和工业源的影响。骆马湖表层沉积物中Pb的输入受北部入湖河流老沂河的影响较大;表层沉积物Pb的来源主要为农业,包括渔业及畜禽养殖等,其区域主要分布在东部和北部湖区,其次为工业排放及生活源。
2.4.2 湖区表层沉积物中Pb的污染源贡献率
将骆马湖深层底泥的206Pb/207Pb作为背景值(1.246),潜在污染源中农业源、工业源、交通源、生活源和其他源土壤的206Pb/207Pb分别为1.211、1.178、1.169、1.186和1.159,由此得出骆马湖各采样点潜在污染源贡献率如图7所示。由图7可知,采样点3、4、20、23、27、28、29的计算结果与聚类分析结果相符合,除主要受农业源影响外,还受生活、工业污染的影响,这些采样点分布在骆马湖主要入湖河流流经区域。此外,骆马湖湖区有80%采样点的污染源中农业源贡献率较高。计算各采样点不同污染源的相对贡献率,得出农业源、工业源、交通源、生活源和其他源贡献率平均值分别为46.71%、20.39%、7.97%、16.81%、8.12%。可见,农业源(包括渔业和畜禽养殖)是骆马湖湖区表层沉积物Pb的主要贡献源。
3. 结论
(1) 骆马湖表层沉积物中Pb浓度为8.09~27.97 mg/kg,平均值为20.94 mg/kg,43.3%采样点Pb浓度超过江苏省土壤环境Pb背景值。EF法评价结果显示,骆马湖表层沉积物中Pb表现为轻度富集,存在一定污染风险。
(2) 骆马湖表层沉积物Pb污染主要集中在东部和北部湖区,表层沉积物中Pb受北部入湖河流老沂河输入的影响较大。表层沉积物中206Pb/207Pb和208Pb/(206Pb+207Pb)分别为1.170~1.249和1.125~1.131,沉积物Pb主要来源于以分布在骆马湖东部和北部湖区的渔业养殖为主的农业源,其相对贡献率为46.71%。
(3) 老沂河和以渔业养殖为主的农业污染的直接排放是重金属Pb的主要入湖方式,需加强对渔业养殖规范化排放的管控,同时要重视对北部老沂河污染输入的治理。
-
表 1 骆马湖与国内其他湖泊表层沉积物中Pb浓度比较
Table 1 Comparison of Pb content in surface sediments of Luoma Lake and other lakes in China
湖泊 年份 样本数 Pb浓度/(mg/kg) 文献来源 骆马湖 2018 30 20.94(8.09~27.97) 本研究 洪泽湖 2013 10 18.82(12.25~26.54) [34] 南四湖 2005 30 20.05(16.42~22.76) [35] 高邮湖 2012 5 24.87(22.06~29.53) [36] 东平湖 2013 44 22.40(15.90~32.60) [37] 太湖 2011 40 36.60(25.60~45.60) [38] 洞庭湖 2013 60 60.99(9.89~180.56) [39] 巢湖 2011 27 49.80(19.05~89.25) [40] 鄱阳湖 2014 38 72.58(47.0~109.25) [41] 青海湖 2020 22 18.06(5.23~28.83) [42] 表 2 骆马湖湖周潜在污染源土壤中Pb同位素组成
Table 2 Pb isotopic composition in soil of potential pollution sources in peri-lacustrine areas of Luoma Lake
污染源类别 208Pb/
204Pb207Pb/
204Pb206Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+ 206Pb)农业源 畜禽1 38.773 15.628 18.566 2.088 1.188 1.134 畜禽2 38.676 15.646 18.582 2.081 1.188 1.130 渔业1 39.235 15.734 19.196 2.044 1.220 1.123 渔业2 39.239 15.734 19.200 2.044 1.220 1.123 渔业3 39.869 15.791 19.643 2.030 1.244 1.125 渔业4 39.741 15.794 19.652 2.022 1.244 1.121 渔业5 38.779 15.638 18.619 2.083 1.191 1.132 种植1 39.043 15.690 18.893 2.066 1.204 1.129 种植2 39.044 15.690 18.893 2.067 1.204 1.129 平均值 39.155 15.705 19.027 2.058 1.211 1.127 工业源 工厂1 38.519 15.629 18.410 2.092 1.178 1.132 工厂2 38.396 15.628 18.310 2.097 1.172 1.131 工厂3 38.641 15.651 18.563 2.082 1.186 1.129 工厂4 38.501 15.637 18.350 2.098 1.174 1.133 平均值 38.514 15.636 18.408 2.092 1.178 1.131 交通源 公路1 38.491 15.628 18.286 2.105 1.170 1.135 公路2 38.357 15.610 18.207 2.107 1.166 1.134 公路3 38.426 15.618 18.281 2.102 1.171 1.134 公路4 38.363 15.609 18.266 2.100 1.170 1.132 平均值 38.409 15.616 18.260 2.104 1.169 1.134 生活源 生活1 38.494 15.644 18.506 2.080 1.183 1.127 生活2 38.665 15.646 18.584 2.081 1.193 1.130 生活3 38.889 15.624 18.513 2.101 1.185 1.139 生活4 38.746 15.630 18.558 2.088 1.187 1.133 平均值 38.699 15.636 18.540 2.088 1.187 1.132 其他源 水源
地138.192 15.599 18.072 2.113 1.159 1.134 水源
地238.315 15.611 18.215 2.103 1.167 1.133 公园 38.252 15.578 18.026 2.122 1.157 1.138 平均值 38.253 15.596 18.104 2.113 1.161 1.135 骆马湖深层
底泥39.937 15.796 19.683 2.029 1.246 1.126 表 3 骆马湖表层沉积物中Pb同位素组成
Table 3 Pb isotopic composition in surface sediments of Luoma Lake
采样点 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)1 18.933 15.738 39.208 2.054 1.221 1.127 2 19.549 15.768 39.407 2.059 1.228 1.128 3 18.924 15.662 39.232 2.043 1.205 1.126 4 18.929 15.663 39.234 2.043 1.206 1.126 5 19.234 15.746 39.403 2.057 1.226 1.128 6 19.129 15.699 39.367 2.054 1.222 1.127 7 19.182 15.770 39.352 2.053 1.220 1.127 8 19.319 15.714 39.375 2.055 1.223 1.128 9 19.108 15.674 39.332 2.051 1.217 1.127 10 19.405 15.758 39.395 2.057 1.225 1.128 11 19.551 15.791 39.424 2.059 1.228 1.128 12 18.966 15.708 39.361 2.054 1.221 1.127 13 19.095 15.769 39.424 2.059 1.228 1.128 14 19.260 15.684 39.359 2.054 1.221 1.127 15 19.420 15.736 39.398 2.057 1.225 1.128 16 19.337 15.704 39.341 2.052 1.218 1.127 17 18.832 15.696 39.311 2.050 1.215 1.127 18 18.976 15.749 39.407 2.058 1.226 1.128 19 19.199 15.673 39.341 2.052 1.219 1.127 20 19.014 15.670 39.274 2.047 1.210 1.126 21 19.197 15.775 39.415 2.058 1.227 1.128 22 19.607 15.792 39.513 2.060 1.230 1.131 23 18.773 15.663 39.177 2.040 1.201 1.125 24 19.653 15.793 39.561 2.061 1.231 1.131 25 19.429 15.771 39.400 2.057 1.226 1.128 26 19.739 15.804 39.997 2.074 1.249 1.131 27 18.727 15.662 38.839 2.026 1.196 1.125 28 18.802 15.663 39.157 2.037 1.196 1.126 29 18.859 15.663 39.223 2.037 1.197 1.126 30 18.916 15.745 39.419 2.060 1.217 1.129 最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 平均值 19.169 15.724 39.355 2.053 1.219 1.128 变异
系数/%1.456 0.304 0.446 0.447 0.952 0.136 表 4 骆马湖表层沉积物中Pb同位素组成
Table 4 Pb isotopic composition in surface sediments of Luoma Lake
区域 数值类别 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)湖区
(n=30)最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 均值 19.169 15.724 39.355 2.053 1.219 1.128 沂河
(n=3)最大值 18.972 15.696 39.182 2.105 1.209 1.135 最小值 18.286 15.628 38.491 2.065 1.170 1.127 均值 18.681 15.666 38.831 2.079 1.192 1.131 老沂河
(n=3)最大值 19.146 15.721 39.201 2.064 1.218 1.127 最小值 18.876 15.679 38.961 2.047 1.204 1.124 均值 19.011 15.700 39.081 2.056 1.211 1.126 中运河
(n=3)最大值 18.920 15.690 39.103 2.067 1.206 1.130 最小值 18.887 15.678 38.980 2.064 1.205 1.128 均值 18.904 15.684 39.042 2.065 1.205 1.129 表 5 骆马湖表层沉积物中Pb同位素组成与Pb浓度的相关性分析
Table 5 Correlation analysis of Pb isotopic composition and Pb content in surface sediments of Luoma Lake
Pb同位素组成 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/206Pb 206Pb/207Pb 208Pb/(207Pb+206Pb) Pb 206Pb/204Pb 1 207Pb/204Pb 0.746** 1 208Pb/204Pb 0.761** 0.714** 1 208Pb/206Pb 0.763** 0.824** 0.909** 1 206Pb/207Pb 0.821** 0.849** 0.875** 0.963** 1 208Pb/(207Pb+206Pb) 0.791** 0.837** 0.847** 0.849** 0.842** 1 Pb 0.758** 0.883** 0.824** 0.965** 0.925** 0.876** 1 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 -
[1] SANKHLA M S, KUMARI M, NANDAN M, et al. Heavy metals contamination in water and their hazardous effect on human health: a review[J]. International Journal of Current Microbiology and Applied Sciences,2016,5(10):759-766. DOI: 10.20546/ijcmas.2016.510.082
[2] 曾晨, 郭少娟, 杨立新.汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018,8(2):221-230. ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018,8(2):221-230.
[3] 牛硕, 陈卫平, 杨阳, 等.基于文献计量的重金属污染土壤修复材料研究热点和前沿分析[J]. 环境工程技术学报,2023,13(1):303-311. NIU S, CHEN W P, YANG Y, et al. Bibliometric analysis of hotspots and frontiers on remediation materials for heavy metal contaminated soils[J]. Journal of Environmental Engineering Technology,2023,13(1):303-311.
[4] 胡恭任, 于瑞莲, 郑志敏.铅稳定同位素在沉积物重金属污染溯源中的应用[J]. 环境科学学报,2013,33(5):1326-1331. HU G R, YU R L, ZHENG Z M. Application of stable lead isotopes in tracing heavy-metal pollution sources in the sediments[J]. Acta Scientiae Circumstantiae,2013,33(5):1326-1331.
[5] 林承奇, 胡恭任, 于瑞莲.福建九龙江下游潮间带沉积物铅污染及同位素示踪[J]. 中国环境科学,2015,35(8):2503-2510. LIN C Q, HU G R, YU R L. Lead pollution and isotopic tracing in intertidal sediments of Jiulong River downstream[J]. China Environmental Science,2015,35(8):2503-2510.
[6] 林承奇. 九龙江近岸表层沉积物微量元素分布特征及来源解析[D]. 泉州: 华侨大学, 2017. [7] 邱敏娴. 泉州湾潮间带沉积物重金属污染及Pb-Sr同位素示踪研究[D]. 泉州: 华侨大学, 2013. [8] 余伟河. 九龙江河口沉积物中重金属赋存形态及铅同位素示踪研究[D]. 泉州: 华侨大学, 2013. [9] RENBERG I, BRÄNNVALL M L, BINDLER R, et al. Stable lead isotopes and lake sediments: a useful combination for the study of atmospheric lead pollution history[J]. Science of the Total Environment,2002,292(1/2):45-54.
[10] TOWNSEND A T, SEEN A J. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment[J]. Science of the Total Environment,2012,424:153-161. DOI: 10.1016/j.scitotenv.2012.02.011
[11] HU N J, HUANG P, ZHANG H, et al. Tracing the Pb origin using stable Pb isotope ratios in sediments of Liaodong Bay, China[J]. Continental Shelf Research,2015,111:268-278. DOI: 10.1016/j.csr.2015.08.029
[12] SUN G X, WANG X J, HU Q H. Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China[J]. Environmental Pollution,2011,159(12):3406-3410. DOI: 10.1016/j.envpol.2011.08.037
[13] 朱赖民, 张海生, 陈立奇.铅稳定同位素在示踪环境污染中的应用[J]. 环境科学研究,2002,15(1):27-30. ZHU L M, ZHANG H S, CHEN L Q. Application of stable lead isotope in trace for environmental pollution[J]. Research of Environmental Sciences,2002,15(1):27-30.
[14] 马文娟, 刘丹妮, 杨芳, 等.水环境中污染物同位素溯源的研究进展[J]. 环境工程技术学报,2020,10(2):242-250. MA W J, LIU D N, YANG F, et al. Research progress in isotope methods for tracing contaminants in water environment[J]. Journal of Environmental Engineering Technology,2020,10(2):242-250.
[15] 王伟, 樊祥科, 黄春贵, 等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3): 494-501. WANG W, FAN X K, HUANG C G, et al. Monitoring and comparison analysis of heavy metals in the five great lakes in Jiangsu Province[J]. Journal of Lake Sciences, 2016, 28(3): 494-501.
[16] 王永平, 洪大林, 申霞, 等.骆马湖沉积物重金属及营养盐污染研究[J]. 南水北调与水利科技,2013,11(6):45-48. WANG Y P, HONG D L, SHEN X, et al. Heavy metals and nutrients pollution in sediments of Luoma Lake[J]. South-to-North Water Transfers and Water Science & Technology,2013,11(6):45-48.
[17] 李文博, 林建宇, 周强, 等.骆马湖现代沉积物137Cs和210Pbex的测定分析与环境指示意义[J]. 环境监测管理与技术,2021,33(5):41-45. LI W B, LIN J Y, ZHOU Q, et al. Determination and environmental implications of 137Cs and 210Pbex in modern sediment from Luoma Lake[J]. The Administration and Technique of Environmental Monitoring,2021,33(5):41-45.
[18] 夏建东. 骆马湖沉积物重金属环境行为及源解析研究[D]. 安庆: 安庆师范大学, 2020. [19] 申霞, 洪大林, 谈永锋, 等.骆马湖生态环境现状及其保护措施[J]. 水资源保护,2013,29(3):39-43. SHEN X, HONG D L, TAN Y F, et al. Ecological environment of Luoma Lake and protection measures[J]. Water Resources Protection,2013,29(3):39-43.
[20] 王庚, 彭婧, 史红星, 等.电感耦合等离子体质谱同时测定沉积物中12种重金属元素[J]. 环境化学,2011,30(11):1944-1948. WANG G, PENG J, SHI H X, et al. Simultaneous determination of twelve heavy metals in sediment by ICP-MS[J]. Environmental Chemistry,2011,30(11):1944-1948.
[21] 宣肇菲, 徐少才, 房贤文, 等.四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试,2015,34(6):617-622. XUAN Z F, XU S C, FANG X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis,2015,34(6):617-622.
[22] 江春霞, 彭渤, 方小红, 等.沅江入湖段河床沉积物重金属污染源的铅同位素示踪[J]. 环境科学学报,2022,42(4):225-236. JIANG C X, PENG B, FANG X H, et al. Lead isotopic tracing on source of heavy metal contamination in sediments from the Yuanjiang River inlet to Dongting Lake, China[J]. Acta Scientiae Circumstantiae,2022,42(4):225-236.
[23] 张俊, 刘季花, 张辉, 等.黄河入海口湿地区底质重金属污染的Pb同位素示踪[J]. 海洋科学进展,2014,32(4):491-500. ZHANG J, LIU J H, ZHANG H, et al. Pollutions from heavy metals in the surface sediments in the wetland region of the Yellow River Estuary: lead isotopic tracer[J]. Advances in Marine Science,2014,32(4):491-500.
[24] 胡忻, 曹密.南京市内河道沉积物中重金属元素形态及Pb稳定同位素组成[J]. 环境科学研究,2009,22(4):398-403. HU X, CAO M. Speciation of heavy metals and Pb stable isotope signatures in urban channel sediments in Nanjing[J]. Research of Environmental Sciences,2009,22(4):398-403.
[25] 赵斌, 朱四喜, 杨秀琴, 等.草海湖沉积物中重金属污染现状及生态风险评价[J]. 环境科学研究,2019,32(2):235-245. ZHAO B, ZHU S X, YANG X Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake[J]. Research of Environmental Sciences,2019,32(2):235-245.
[26] N'GUESSAN Y M, PROBST J L, BUR T, et al. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from[J]. Science of the Total Environment,2009,407(8):2939-2952. DOI: 10.1016/j.scitotenv.2008.12.047
[27] PENG B, TANG X Y, YU C X, et al. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P. R. China): implications on sources of trace metals[J]. Environmental Earth Sciences,2011,64(5):1455-1473. DOI: 10.1007/s12665-011-0969-0
[28] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology,2000,39(6):611-627. DOI: 10.1007/s002540050473
[29] 于瑞莲, 胡恭任, 袁星, 等.同位素示踪技术在沉积物重金属污染溯源中的应用[J]. 地球与环境,2008,36(3):245-250. YU R L, HU G R, YUAN X, et al. Application of isotope tracing technique in the recognition of pollution sources by heavy metals in sediments[J]. Earth and Environment,2008,36(3):245-250.
[30] 廖启林, 刘聪, 许艳, 等.江苏省土壤元素地球化学基准值[J]. 中国地质,2011,38(5):1363-1378. LIAO Q L, LIU C, XU Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China,2011,38(5):1363-1378.
[31] 李爱花. 南水北调东线工程蓄水系统运行风险分析[D]. 南京: 南京水利科学研究院, 2009. [32] 刘阁阁. 天津海岸带沉积物铅锶同位素特征及其环境学意义[D]. 北京: 中国地质大学(北京), 2019. [33] 尚英男. 土壤-植物的重金属污染特征及铅同位素示踪研究: 以成都经济区典型城市为例[D]. 成都: 成都理工大学, 2007. [34] 余辉, 张文斌, 余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J]. 环境科学,2011,32(2):437-444. YU H, ZHANG W B, YU J P. Distribution and potential ecological risk assessment of heavy metals in surface sediments of Hongze Lake[J]. Environmental Science,2011,32(2):437-444.
[35] 杨丽原, 沈吉, 张祖陆, 等.近四十年来山东南四湖环境演化的元素地球化学记录[J]. 地球化学,2003,32(5):453-460. YANG L Y, SHEN J, ZHANG Z L, et al. A 40-year element geochemical record and its environment implication in Lake Nansihu, Shandong Province[J]. Geochimica,2003,32(5):453-460.
[36] 陈乾坤, 刘涛, 胡志新, 等.江苏省西部湖泊表层沉积物中重金属分布特征及其潜在生态风险评价[J]. 农业环境科学学报,2013,32(5):1044-1050. CHEN Q K, LIU T, HU Z X, et al. Distribution and ecological risk assessment of heavy metals in surface sediments from the lakes of west Jiangsu Province[J]. Journal of Agro-Environment Science,2013,32(5):1044-1050.
[37] 张菊, 何振芳, 董杰, 等.东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报,2016,25(10):1699-1706. ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences,2016,25(10):1699-1706.
[38] YUAN H Z, SHEN J, LIU E F, et al. Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China[J]. Environmental Geochemistry and Health,2011,33(1):67-81. DOI: 10.1007/s10653-010-9323-9
[39] LI F, HUANG J H, ZENG G M, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China[J]. Journal of Geochemical Exploration,2013,132:75-83. DOI: 10.1016/j.gexplo.2013.05.007
[40] YIN H B, DENG J C, SHAO S G, et al. Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China[J]. Environmental Monitoring and Assessment,2011,179(1):431-442.
[41] 伍恒赟, 罗勇, 张起明, 等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测,2014,30(6):114-119. WU H Y, LUO Y, ZHANG Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China,2014,30(6):114-119.
[42] 张雅然. 青海湖流域沉积物重金属分布特征与生态风险评价[D]. 北京: 华北电力大学(北京), 2022. [43] 纪小敏, 马倩, 董家根, 等.江苏省入骆马湖污染物总量分析[J]. 江苏水利,2010(10):44-46. [44] 李褆来, 曲红玲, 陈黎明, 等.骆马湖水位动库容分析[J]. 中国科技论文,2012,7(5):372-376. LI T L, QU H L, CHEN L M, et al. Analysis of water level and dynamic capacity of Luoma Lake[J]. China Sciencepaper,2012,7(5):372-376. ◇
-
期刊类型引用(3)
1. 朱玲,刘琨,李兰兰,苑红丹,赵美姿,李炜. 天津市农田土壤重金属来源及健康风险评价. 环境工程技术学报. 2024(03): 995-1004 . 本站查看
2. 尚婷婷,张亚群,周静,曹素珍. 白银市城郊周边农田土壤重金属污染特征及来源解析. 环境生态学. 2023(04): 19-26 . 百度学术
3. 吴继法,赵艳芳. 基于铅稳定同位素比值和线性判别分析相结合的刺参产地溯源研究. 食品科技. 2023(12): 135-140 . 百度学术
其他类型引用(1)