Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes
-
摘要:
骆马湖作为南水北调东线工程重要的调蓄湖泊和水源地,其水环境安全对于江苏北部乃至南水北调东线工程的影响深远。通过对骆马湖湖区及入湖河段表层沉积物、湖周地区环境中潜在污染源土壤的Pb浓度和Pb同位素组成进行分析,评估Pb的空间分布;利用富集系数法进行Pb生态风险评价,结合二元线性混合模型进行湖区表层沉积物Pb来源解析,并计算各污染源的相对贡献率。结果表明:骆马湖表层沉积物中Pb浓度为8.09~27.97 mg/kg,平均值为20.94 mg/kg,Pb污染程度为清洁~轻度富集,表层沉积物Pb污染主要集中在东部和北部湖区;表层沉积物Pb同位素中206Pb/207Pb与208Pb/(206Pb+207Pb)(丰度之比)分别为1.170~1.249和1.125~1.131,Pb污染主要来源于老沂河和以渔业养殖为主的农业污染的直接排放,农业源的相对贡献率为46.71%。为防控骆马湖水环境中Pb的污染风险,需加强对渔业养殖的规范化管理和入湖河流的污染管控。
Abstract:As an important storage lake and water source of the east route of South-to-North Water Transfer Project, Luoma Lake's water environment safety has a far-reaching impact on northern Jiangsu and even the east route of South-to-North Water Transfer Project. By analyzing the Pb content and Pb isotopic composition of the surface sediments of Luoma Lake and rivers into the lake, and the soil of potential pollution sources in the surrounding areas, the spatial distribution of lead was evaluated. The ecological risk assessment of heavy metal Pb was carried out by using the enrichment coefficient method, and the binary linear mixed model was applied to analyze the polluting sources and calculate the relative contribution rate of each source. The results showed that the content of Pb in surface sediments of Luoma Lake ranged from 8.09 to 27.97 mg/kg, with an average of 20.94 mg/kg, and Pb in surface sediments of Luoma Lake showed a clean-slight pollution level. Spatial analysis showed that Pb pollution of surface sediments in Luoma Lake was mainly concentrated in the eastern and northern lakes. The values of 206Pb/207Pb and 208Pb/(206Pb+207Pb) (the ratios of abundance) in the surface sediments of Luoma Lake were 1.170-1.249 and 1.125-1.131, respectively, and the Pb pollution mainly came from the Laoyi River and the direct discharge of agricultural pollution from fishery farming. The relative contribution rate of agricultural sources was 46.71%. In order to prevent and control the pollution risk of Pb in Luoma Lake water environment, it was necessary to strengthen the standardized management of fishery culture and the pollution control of rivers entering the lake.
-
Key words:
- lead isotope /
- Luoma Lake /
- sediment /
- heavy metals /
- source analysis
-
表 1 骆马湖与国内其他湖泊表层沉积物中Pb浓度比较
Table 1. Comparison of Pb content in surface sediments of Luoma Lake and other lakes in China
湖泊 年份 样本数 Pb浓度/(mg/kg) 文献来源 骆马湖 2018 30 20.94(8.09~27.97) 本研究 洪泽湖 2013 10 18.82(12.25~26.54) [34] 南四湖 2005 30 20.05(16.42~22.76) [35] 高邮湖 2012 5 24.87(22.06~29.53) [36] 东平湖 2013 44 22.40(15.90~32.60) [37] 太湖 2011 40 36.60(25.60~45.60) [38] 洞庭湖 2013 60 60.99(9.89~180.56) [39] 巢湖 2011 27 49.80(19.05~89.25) [40] 鄱阳湖 2014 38 72.58(47.0~109.25) [41] 青海湖 2020 22 18.06(5.23~28.83) [42] 表 2 骆马湖湖周潜在污染源土壤中Pb同位素组成
Table 2. Pb isotopic composition in soil of potential pollution sources in peri-lacustrine areas of Luoma Lake
污染源类别 208Pb/
204Pb207Pb/
204Pb206Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+ 206Pb)农业源 畜禽1 38.773 15.628 18.566 2.088 1.188 1.134 畜禽2 38.676 15.646 18.582 2.081 1.188 1.130 渔业1 39.235 15.734 19.196 2.044 1.220 1.123 渔业2 39.239 15.734 19.200 2.044 1.220 1.123 渔业3 39.869 15.791 19.643 2.030 1.244 1.125 渔业4 39.741 15.794 19.652 2.022 1.244 1.121 渔业5 38.779 15.638 18.619 2.083 1.191 1.132 种植1 39.043 15.690 18.893 2.066 1.204 1.129 种植2 39.044 15.690 18.893 2.067 1.204 1.129 平均值 39.155 15.705 19.027 2.058 1.211 1.127 工业源 工厂1 38.519 15.629 18.410 2.092 1.178 1.132 工厂2 38.396 15.628 18.310 2.097 1.172 1.131 工厂3 38.641 15.651 18.563 2.082 1.186 1.129 工厂4 38.501 15.637 18.350 2.098 1.174 1.133 平均值 38.514 15.636 18.408 2.092 1.178 1.131 交通源 公路1 38.491 15.628 18.286 2.105 1.170 1.135 公路2 38.357 15.610 18.207 2.107 1.166 1.134 公路3 38.426 15.618 18.281 2.102 1.171 1.134 公路4 38.363 15.609 18.266 2.100 1.170 1.132 平均值 38.409 15.616 18.260 2.104 1.169 1.134 生活源 生活1 38.494 15.644 18.506 2.080 1.183 1.127 生活2 38.665 15.646 18.584 2.081 1.193 1.130 生活3 38.889 15.624 18.513 2.101 1.185 1.139 生活4 38.746 15.630 18.558 2.088 1.187 1.133 平均值 38.699 15.636 18.540 2.088 1.187 1.132 其他源 水源
地138.192 15.599 18.072 2.113 1.159 1.134 水源
地238.315 15.611 18.215 2.103 1.167 1.133 公园 38.252 15.578 18.026 2.122 1.157 1.138 平均值 38.253 15.596 18.104 2.113 1.161 1.135 骆马湖深层
底泥39.937 15.796 19.683 2.029 1.246 1.126 表 3 骆马湖表层沉积物中Pb同位素组成
Table 3. Pb isotopic composition in surface sediments of Luoma Lake
采样点 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)1 18.933 15.738 39.208 2.054 1.221 1.127 2 19.549 15.768 39.407 2.059 1.228 1.128 3 18.924 15.662 39.232 2.043 1.205 1.126 4 18.929 15.663 39.234 2.043 1.206 1.126 5 19.234 15.746 39.403 2.057 1.226 1.128 6 19.129 15.699 39.367 2.054 1.222 1.127 7 19.182 15.770 39.352 2.053 1.220 1.127 8 19.319 15.714 39.375 2.055 1.223 1.128 9 19.108 15.674 39.332 2.051 1.217 1.127 10 19.405 15.758 39.395 2.057 1.225 1.128 11 19.551 15.791 39.424 2.059 1.228 1.128 12 18.966 15.708 39.361 2.054 1.221 1.127 13 19.095 15.769 39.424 2.059 1.228 1.128 14 19.260 15.684 39.359 2.054 1.221 1.127 15 19.420 15.736 39.398 2.057 1.225 1.128 16 19.337 15.704 39.341 2.052 1.218 1.127 17 18.832 15.696 39.311 2.050 1.215 1.127 18 18.976 15.749 39.407 2.058 1.226 1.128 19 19.199 15.673 39.341 2.052 1.219 1.127 20 19.014 15.670 39.274 2.047 1.210 1.126 21 19.197 15.775 39.415 2.058 1.227 1.128 22 19.607 15.792 39.513 2.060 1.230 1.131 23 18.773 15.663 39.177 2.040 1.201 1.125 24 19.653 15.793 39.561 2.061 1.231 1.131 25 19.429 15.771 39.400 2.057 1.226 1.128 26 19.739 15.804 39.997 2.074 1.249 1.131 27 18.727 15.662 38.839 2.026 1.196 1.125 28 18.802 15.663 39.157 2.037 1.196 1.126 29 18.859 15.663 39.223 2.037 1.197 1.126 30 18.916 15.745 39.419 2.060 1.217 1.129 最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 平均值 19.169 15.724 39.355 2.053 1.219 1.128 变异
系数/%1.456 0.304 0.446 0.447 0.952 0.136 表 4 骆马湖表层沉积物中Pb同位素组成
Table 4. Pb isotopic composition in surface sediments of Luoma Lake
区域 数值类别 206Pb/
204Pb207Pb/
204Pb208Pb/
204Pb208Pb/
206Pb206Pb/
207Pb208Pb/
(207Pb+206Pb)湖区
(n=30)最大值 19.739 15.804 39.997 2.074 1.249 1.131 最小值 18.727 15.662 38.839 2.026 1.196 1.125 均值 19.169 15.724 39.355 2.053 1.219 1.128 沂河
(n=3)最大值 18.972 15.696 39.182 2.105 1.209 1.135 最小值 18.286 15.628 38.491 2.065 1.170 1.127 均值 18.681 15.666 38.831 2.079 1.192 1.131 老沂河
(n=3)最大值 19.146 15.721 39.201 2.064 1.218 1.127 最小值 18.876 15.679 38.961 2.047 1.204 1.124 均值 19.011 15.700 39.081 2.056 1.211 1.126 中运河
(n=3)最大值 18.920 15.690 39.103 2.067 1.206 1.130 最小值 18.887 15.678 38.980 2.064 1.205 1.128 均值 18.904 15.684 39.042 2.065 1.205 1.129 表 5 骆马湖表层沉积物中Pb同位素组成与Pb浓度的相关性分析
Table 5. Correlation analysis of Pb isotopic composition and Pb content in surface sediments of Luoma Lake
Pb同位素组成 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/206Pb 206Pb/207Pb 208Pb/(207Pb+206Pb) Pb 206Pb/204Pb 1 207Pb/204Pb 0.746** 1 208Pb/204Pb 0.761** 0.714** 1 208Pb/206Pb 0.763** 0.824** 0.909** 1 206Pb/207Pb 0.821** 0.849** 0.875** 0.963** 1 208Pb/(207Pb+206Pb) 0.791** 0.837** 0.847** 0.849** 0.842** 1 Pb 0.758** 0.883** 0.824** 0.965** 0.925** 0.876** 1 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 -
[1] SANKHLA M S, KUMARI M, NANDAN M, et al. Heavy metals contamination in water and their hazardous effect on human health: a review[J]. International Journal of Current Microbiology and Applied Sciences,2016,5(10):759-766. doi: 10.20546/ijcmas.2016.510.082 [2] 曾晨, 郭少娟, 杨立新.汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报,2018,8(2):221-230.ZENG C, GUO S J, YANG L X. Toxic effects and mechanisms of exposure to single and mixture of mercury, cadmium, lead and arsenic[J]. Journal of Environmental Engineering Technology,2018,8(2):221-230. [3] 牛硕, 陈卫平, 杨阳, 等.基于文献计量的重金属污染土壤修复材料研究热点和前沿分析[J]. 环境工程技术学报,2023,13(1):303-311.NIU S, CHEN W P, YANG Y, et al. Bibliometric analysis of hotspots and frontiers on remediation materials for heavy metal contaminated soils[J]. Journal of Environmental Engineering Technology,2023,13(1):303-311. [4] 胡恭任, 于瑞莲, 郑志敏.铅稳定同位素在沉积物重金属污染溯源中的应用[J]. 环境科学学报,2013,33(5):1326-1331.HU G R, YU R L, ZHENG Z M. Application of stable lead isotopes in tracing heavy-metal pollution sources in the sediments[J]. Acta Scientiae Circumstantiae,2013,33(5):1326-1331. [5] 林承奇, 胡恭任, 于瑞莲.福建九龙江下游潮间带沉积物铅污染及同位素示踪[J]. 中国环境科学,2015,35(8):2503-2510.LIN C Q, HU G R, YU R L. Lead pollution and isotopic tracing in intertidal sediments of Jiulong River downstream[J]. China Environmental Science,2015,35(8):2503-2510. [6] 林承奇. 九龙江近岸表层沉积物微量元素分布特征及来源解析[D]. 泉州: 华侨大学, 2017. [7] 邱敏娴. 泉州湾潮间带沉积物重金属污染及Pb-Sr同位素示踪研究[D]. 泉州: 华侨大学, 2013. [8] 余伟河. 九龙江河口沉积物中重金属赋存形态及铅同位素示踪研究[D]. 泉州: 华侨大学, 2013. [9] RENBERG I, BRÄNNVALL M L, BINDLER R, et al. Stable lead isotopes and lake sediments: a useful combination for the study of atmospheric lead pollution history[J]. Science of the Total Environment,2002,292(1/2):45-54. [10] TOWNSEND A T, SEEN A J. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment[J]. Science of the Total Environment,2012,424:153-161. doi: 10.1016/j.scitotenv.2012.02.011 [11] HU N J, HUANG P, ZHANG H, et al. Tracing the Pb origin using stable Pb isotope ratios in sediments of Liaodong Bay, China[J]. Continental Shelf Research,2015,111:268-278. doi: 10.1016/j.csr.2015.08.029 [12] SUN G X, WANG X J, HU Q H. Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China[J]. Environmental Pollution,2011,159(12):3406-3410. doi: 10.1016/j.envpol.2011.08.037 [13] 朱赖民, 张海生, 陈立奇.铅稳定同位素在示踪环境污染中的应用[J]. 环境科学研究,2002,15(1):27-30.ZHU L M, ZHANG H S, CHEN L Q. Application of stable lead isotope in trace for environmental pollution[J]. Research of Environmental Sciences,2002,15(1):27-30. [14] 马文娟, 刘丹妮, 杨芳, 等.水环境中污染物同位素溯源的研究进展[J]. 环境工程技术学报,2020,10(2):242-250.MA W J, LIU D N, YANG F, et al. Research progress in isotope methods for tracing contaminants in water environment[J]. Journal of Environmental Engineering Technology,2020,10(2):242-250. [15] 王伟, 樊祥科, 黄春贵, 等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3): 494-501.WANG W, FAN X K, HUANG C G, et al. Monitoring and comparison analysis of heavy metals in the five great lakes in Jiangsu Province[J]. Journal of Lake Sciences, 2016, 28(3): 494-501. [16] 王永平, 洪大林, 申霞, 等.骆马湖沉积物重金属及营养盐污染研究[J]. 南水北调与水利科技,2013,11(6):45-48.WANG Y P, HONG D L, SHEN X, et al. Heavy metals and nutrients pollution in sediments of Luoma Lake[J]. South-to-North Water Transfers and Water Science & Technology,2013,11(6):45-48. [17] 李文博, 林建宇, 周强, 等.骆马湖现代沉积物137Cs和210Pbex的测定分析与环境指示意义[J]. 环境监测管理与技术,2021,33(5):41-45.LI W B, LIN J Y, ZHOU Q, et al. Determination and environmental implications of 137Cs and 210Pbex in modern sediment from Luoma Lake[J]. The Administration and Technique of Environmental Monitoring,2021,33(5):41-45. [18] 夏建东. 骆马湖沉积物重金属环境行为及源解析研究[D]. 安庆: 安庆师范大学, 2020. [19] 申霞, 洪大林, 谈永锋, 等.骆马湖生态环境现状及其保护措施[J]. 水资源保护,2013,29(3):39-43.SHEN X, HONG D L, TAN Y F, et al. Ecological environment of Luoma Lake and protection measures[J]. Water Resources Protection,2013,29(3):39-43. [20] 王庚, 彭婧, 史红星, 等.电感耦合等离子体质谱同时测定沉积物中12种重金属元素[J]. 环境化学,2011,30(11):1944-1948.WANG G, PENG J, SHI H X, et al. Simultaneous determination of twelve heavy metals in sediment by ICP-MS[J]. Environmental Chemistry,2011,30(11):1944-1948. [21] 宣肇菲, 徐少才, 房贤文, 等.四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试,2015,34(6):617-622.XUAN Z F, XU S C, FANG X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis,2015,34(6):617-622. [22] 江春霞, 彭渤, 方小红, 等.沅江入湖段河床沉积物重金属污染源的铅同位素示踪[J]. 环境科学学报,2022,42(4):225-236.JIANG C X, PENG B, FANG X H, et al. Lead isotopic tracing on source of heavy metal contamination in sediments from the Yuanjiang River inlet to Dongting Lake, China[J]. Acta Scientiae Circumstantiae,2022,42(4):225-236. [23] 张俊, 刘季花, 张辉, 等.黄河入海口湿地区底质重金属污染的Pb同位素示踪[J]. 海洋科学进展,2014,32(4):491-500.ZHANG J, LIU J H, ZHANG H, et al. Pollutions from heavy metals in the surface sediments in the wetland region of the Yellow River Estuary: lead isotopic tracer[J]. Advances in Marine Science,2014,32(4):491-500. [24] 胡忻, 曹密.南京市内河道沉积物中重金属元素形态及Pb稳定同位素组成[J]. 环境科学研究,2009,22(4):398-403.HU X, CAO M. Speciation of heavy metals and Pb stable isotope signatures in urban channel sediments in Nanjing[J]. Research of Environmental Sciences,2009,22(4):398-403. [25] 赵斌, 朱四喜, 杨秀琴, 等.草海湖沉积物中重金属污染现状及生态风险评价[J]. 环境科学研究,2019,32(2):235-245.ZHAO B, ZHU S X, YANG X Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake[J]. Research of Environmental Sciences,2019,32(2):235-245. [26] N'GUESSAN Y M, PROBST J L, BUR T, et al. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from[J]. Science of the Total Environment,2009,407(8):2939-2952. doi: 10.1016/j.scitotenv.2008.12.047 [27] PENG B, TANG X Y, YU C X, et al. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P. R. China): implications on sources of trace metals[J]. Environmental Earth Sciences,2011,64(5):1455-1473. doi: 10.1007/s12665-011-0969-0 [28] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology,2000,39(6):611-627. doi: 10.1007/s002540050473 [29] 于瑞莲, 胡恭任, 袁星, 等.同位素示踪技术在沉积物重金属污染溯源中的应用[J]. 地球与环境,2008,36(3):245-250.YU R L, HU G R, YUAN X, et al. Application of isotope tracing technique in the recognition of pollution sources by heavy metals in sediments[J]. Earth and Environment,2008,36(3):245-250. [30] 廖启林, 刘聪, 许艳, 等.江苏省土壤元素地球化学基准值[J]. 中国地质,2011,38(5):1363-1378.LIAO Q L, LIU C, XU Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China,2011,38(5):1363-1378. [31] 李爱花. 南水北调东线工程蓄水系统运行风险分析[D]. 南京: 南京水利科学研究院, 2009. [32] 刘阁阁. 天津海岸带沉积物铅锶同位素特征及其环境学意义[D]. 北京: 中国地质大学(北京), 2019. [33] 尚英男. 土壤-植物的重金属污染特征及铅同位素示踪研究: 以成都经济区典型城市为例[D]. 成都: 成都理工大学, 2007. [34] 余辉, 张文斌, 余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J]. 环境科学,2011,32(2):437-444.YU H, ZHANG W B, YU J P. Distribution and potential ecological risk assessment of heavy metals in surface sediments of Hongze Lake[J]. Environmental Science,2011,32(2):437-444. [35] 杨丽原, 沈吉, 张祖陆, 等.近四十年来山东南四湖环境演化的元素地球化学记录[J]. 地球化学,2003,32(5):453-460.YANG L Y, SHEN J, ZHANG Z L, et al. A 40-year element geochemical record and its environment implication in Lake Nansihu, Shandong Province[J]. Geochimica,2003,32(5):453-460. [36] 陈乾坤, 刘涛, 胡志新, 等.江苏省西部湖泊表层沉积物中重金属分布特征及其潜在生态风险评价[J]. 农业环境科学学报,2013,32(5):1044-1050.CHEN Q K, LIU T, HU Z X, et al. Distribution and ecological risk assessment of heavy metals in surface sediments from the lakes of west Jiangsu Province[J]. Journal of Agro-Environment Science,2013,32(5):1044-1050. [37] 张菊, 何振芳, 董杰, 等.东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报,2016,25(10):1699-1706.ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences,2016,25(10):1699-1706. [38] YUAN H Z, SHEN J, LIU E F, et al. Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China[J]. Environmental Geochemistry and Health,2011,33(1):67-81. doi: 10.1007/s10653-010-9323-9 [39] LI F, HUANG J H, ZENG G M, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China[J]. Journal of Geochemical Exploration,2013,132:75-83. doi: 10.1016/j.gexplo.2013.05.007 [40] YIN H B, DENG J C, SHAO S G, et al. Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China[J]. Environmental Monitoring and Assessment,2011,179(1):431-442. [41] 伍恒赟, 罗勇, 张起明, 等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测,2014,30(6):114-119.WU H Y, LUO Y, ZHANG Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China,2014,30(6):114-119. [42] 张雅然. 青海湖流域沉积物重金属分布特征与生态风险评价[D]. 北京: 华北电力大学(北京), 2022. [43] 纪小敏, 马倩, 董家根, 等.江苏省入骆马湖污染物总量分析[J]. 江苏水利,2010(10):44-46. [44] 李褆来, 曲红玲, 陈黎明, 等.骆马湖水位动库容分析[J]. 中国科技论文,2012,7(5):372-376.LI T L, QU H L, CHEN L M, et al. Analysis of water level and dynamic capacity of Luoma Lake[J]. China Sciencepaper,2012,7(5):372-376. ◇