留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酰胺基两性分子对二硫化钨吸附铀容量的影响机制

赵家印 柳玉辉 王子鸣 唐梦 卢雅宁 张爽 王英财 刘云海 邓圣

赵家印,柳玉辉,王子鸣,等.酰胺基两性分子对二硫化钨吸附铀容量的影响机制[J].环境工程技术学报,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498
引用本文: 赵家印,柳玉辉,王子鸣,等.酰胺基两性分子对二硫化钨吸附铀容量的影响机制[J].环境工程技术学报,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498
ZHAO J Y,LIU Y H,WANG Z M,et al.Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2[J].Journal of Environmental Engineering Technology,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498
Citation: ZHAO J Y,LIU Y H,WANG Z M,et al.Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2[J].Journal of Environmental Engineering Technology,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498

酰胺基两性分子对二硫化钨吸附铀容量的影响机制

doi: 10.12153/j.issn.1674-991X.20220498
基金项目: 国家自然科学基金地区科学基金项目(22266003);国家自然科学基金青年基金项目(22006013);江西省主要学科学术和技术带头人培养计划青年人才项目(20225BCJ23020)
详细信息
    作者简介:

    赵家印(1999—),男,硕士,主要从事核燃料循环与材料研究,zjyecut@163.com

    通讯作者:

    柳玉辉(1986—),女,副教授,博士,主要从事放射化学与环境化学的研究,liuyuhui@ecut.edu.cn

    邓圣(1989—),男,副研究员,博士,主要从事环境功能材料与技术开发,ds_hit@163.com

  • 中图分类号: X703

Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2

  • 摘要:

    含铀废水中铀的回收主要是基于材料与[UO2(H2O)5]2+中UO2 2+之间的络合,但H2O的电偶极矩对络合有显著弱化作用。采用酰胺基两性分子N,N-二甲基-9-癸烯酰胺(NADA)氢键作用与[UO2(H2O)5]2+形成UO2[(H2O)xC12H23NO]n *x<5,UO2-Coordination Compound,简称UO2-CC),选取惰性物质WS2为吸附材料,通过静态吸附试验(不同pH、接触时间、浓度和温度)分别研究其对UO2 2+和UO2-CC的吸附量。动力学拟合结果表明,二者的吸附反应是化学吸附过程,UO2 2+经NADA重构后,吸附时间从240 min缩短至180 min,准二级动力学吸附常数提高1.35倍。等温吸附研究结果表明,WS2与UO2-CC络合过程符合Langmuir吸附等温模型,且NADA的加入使吸附由自发吸热过程转变为自发放热过程,吸附反应过程有序度增加。NADA原位重构[UO2(H2O)5]2+后,WS2对UO2 2+的平衡吸附量由45.03 mg/g(WS2/UO2 2+体系)提高到122.14 mg/g(WS2/UO2-CC体系)。采用光谱分析(X射线光电子能谱法)从分子水平深入研究NADA原位重构[UO2(H2O)5]2+后在WS2上的吸附机制,揭示静电、氢键和U—S共价键等作用力对吸附的贡献,特别是NADA的氢键作用。

     

  • 图  1  WS2、WS2/UO2 2+体系、WS2/UO2-CC体系的扫描电镜图

    Figure  1.  Scanning electron micrographs of WS2, WS2/UO2 2+ system and WS2/UO2-CC system

    图  2  WS2、WS2/UO2 2+体系和WS2/UO2-CC体系的XRD谱图

    Figure  2.  X-ray diffraction pattern of WS2, WS2/UO2 2+ system and WS2/UO2-CC system

    图  3  WS2/UO2-CC体系的FT-IR谱图

    Figure  3.  FT-IR spectra of WS2/UO2-CC system

    图  4  WS2、WS2/UO2 2+和WS2/UO2-CC体系的静态接触角

    Figure  4.  Static contact angle of WS2, WS2/UO2 2+ and WS2/UO2-CC system

    图  5  不同pH下WS2/UO2-CC体系的平衡吸附量

    Figure  5.  Equilibrium adsorption capacity of WS2/UO2-CC system at different pH

    图  6  不同NADA添加量下WS2/UO2-CC体系的平衡吸附量(pH为5)

    Figure  6.  Equilibrium adsorption capacity of WS2/UO2-CC system by adding different fractions of NADA (pH=5)

    图  7  WS2/UO2 2+和WS2/UO2-CC体系的动力学曲线

    Figure  7.  Kinetic curves of WS2/UO2 2+ and WS2/UO2-CC system

    图  8  不同初始UO2 2+浓度下WS2/UO2 2+和WS2/UO2-CC体系的平衡吸附量

    Figure  8.  Equilibrium adsorption capacity of UO2 2+ and WS2/UO2-CC system at different initial UO22+ concentrations

    图  9  不同温度下WS2/UO2 2+和WS2/UO2-CC体系的平衡吸附量

    Figure  9.  Equilibrium adsorption capacity of WS2/UO2 2+ and WS2/UO2-CC system at different temperatures

    图  10  WS2/UO2 2+和WS2/UO2-CC体系的XPS光谱图及WS2/UO2-CC体系的U 4f光谱图

    Figure  10.  XPS spectra of WS2/UO2 2+ and WS2/UO2-CC systems and U 4f spectra of WS2/UO2-CC system

    表  1  WS2、WS2/UO22+和WS2/UO2-CC体系中各元素含量

    Table  1.   Contents of elements in WS2, WS2/UO22+ and WS2/UO2-CC system % 

    体系CNOSWU合计
    WS215.5784.43100
    WS2/UO22+14.3584.061.59100
    WS2/UO2-CC2.000.240.7414.4879.652.89100
    下载: 导出CSV

    表  2  WS2/UO2 2+和WS2/UO2-CC体系的准一级动力学、准二级动力学参数

    Table  2.   Pseudo-first-order and Pseudo-second-order kinetic parameters of WS2/UO2 2+ and WS2/UO2-CC system

    吸附体系qe/(mg/g)准一级动力学准二级动力学
    q1/(mg/g)k1/min-1R2q2/(mg/g)k2/〔mg/(g·min)〕R2
    WS2/UO2 2+46.1028.830.009 00.96147.640.000 8460.997 4
    WS2/UO2-CC122.2045.900.014 70.988123.940.001 1400.999 7
    下载: 导出CSV

    表  3  WS2/UO2 2+和WS2/UO2-CC体系的Langmuir吸附等温模型、Freundlich吸附等温模型参数

    Table  3.   Langmuir adsorption isothermal model and Freundlich adsorption isothermal model parameters of WS2/UO2 2+ and WS2/UO2-CC system

    吸附体系Langmuir模型Freundlich模型
    KLqm/(mg/g)R2KFnR2
    WS2/UO2 2+0.02737.400.9855.231.910.974
    WS2/UO2-CC0.018129.860.99720.332.210.922
    下载: 导出CSV

    表  4  WS2/UO2 2+和WS2/UO2-CC体系的D-R吸附等温模型参数

    Table  4.   D-R adsorption isothermal model parameters of WS2/UO2 2+ and WS2/UO2-CC system

    吸附体系qD-R/(mg/g)β/(mol2/kJ2)ED-R/(kJ/mol)R2
    WS2/UO2 2+0.001 30.004 810.240.982
    WS2/UO2-CC0.003 50.004 610.470.934
      注:ED-R为吸附平均自由能,kJ/mol。$E_{ {\rm{D} }{\text -}{\rm{R} } }=1/\sqrt{2\beta}$。
    下载: 导出CSV

    表  5  WS2/UO2 2+和WS2/UO2-CC体系的热力学参数

    Table  5.   Thermodynamic parameters of WS2/UO2 2+ system and WS2/UO2-CC system

    吸附体系ΔG/(kJ/mol)ΔH/(kJ/mol)ΔS/〔J/(mol·K)〕
    278.15 K288.15 K198.15 K308.15 K318.15 K
    WS2/UO2 2+−14.45−15.47−16.50−17.53−18.5514.08102.50
    WS2/UO2-CC−18.82−19.46−20.09−20.73−21.36−1.1663.50
    下载: 导出CSV
  • [1] 稂涛, 胡南, 张辉, 等.博落回对不同化学形态铀的富集特征[J]. 环境科学研究,2017,30(8):1238-1245.

    LANG T, HU N, ZHANG H, et al. Accumulation of different chemical species of uranium in Macleaya cordata[J]. Research of Environmental Sciences,2017,30(8):1238-1245.
    [2] YAN X, YANG L, ZHANG X, et al. Concept of an accelerator-driven advanced nuclear energy system[J]. Energies,2017,10(7):944-957. doi: 10.3390/en10070944
    [3] LADSHAW A P, IVANOV A S, DAS S, et al. First-principles integrated adsorption modeling for selective capture of uranium from seawater by polyamidoxime sorbent materials[J]. ACS Applied Materials & Interfaces,2018,10(15):12580-12593.
    [4] 律志民, 杨世民, 陈磊, 等.新型LDH@MOF-76复合材料对于水溶液中铀酰的高效富集[J]. 中国科学:化学,2019,49(1):53-64. doi: 10.1360/N032018-00112

    LÜ Z M, YANG S M, CHEN L, et al. Enhanced removal of uranium(Ⅵ) from aqueous solution by a novel LDH@MOF-76 composite[J]. Scientia Sinica Chimica),2019,49(1):53-64. doi: 10.1360/N032018-00112
    [5] WANG Z M, LEE S W, CATALANO J G, et al. Adsorption of uranium(Ⅵ) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling[J]. Environmental Science & Technology,2013,47(2):850-858.
    [6] LI Z J, CHEN F, YUAN L Y, et al. Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal,2012,210:539-546. doi: 10.1016/j.cej.2012.09.030
    [7] HAN R P, ZOU W H, WANG Y, et al. Removal of uranium(Ⅵ) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect[J]. Journal of Environmental Radioactivity,2007,93(3):127-143. doi: 10.1016/j.jenvrad.2006.12.003
    [8] FASFOUS I I, DAWOUD J N. Uranium(Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science,2012,259:433-440. doi: 10.1016/j.apsusc.2012.07.062
    [9] BACHMAF S, MERKEL B J. Sorption of uranium(Ⅵ) at the clay mineral–water interface[J]. Environmental Earth Sciences,2011,63(5):925-934. doi: 10.1007/s12665-010-0761-6
    [10] ABD EL-MAGIED M O. Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles[J]. Journal of Engineering,2016,2016:7214348.
    [11] SINGH S, KAUR M, BAJWA B S, et al. Salicylaldehyde and 3-hydroxybenzoic acid grafted NH2-MCM-41: synthesis, characterization and application as U(Ⅵ) scavenging adsorbents using batch mode, column and membrane systems[J]. Journal of Molecular Liquids,2022,346:117061. doi: 10.1016/j.molliq.2021.117061
    [12] JIANG X Y, WANG H Q, WANG Q L, et al. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium[J]. Journal of Cleaner Production,2020,247:119162. doi: 10.1016/j.jclepro.2019.119162
    [13] BARBER P S, KELLEY S P, GRIGGS C, et al. Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan[J]. Green Chemistry,2014,16:1828-1836. doi: 10.1039/C4GC00092G
    [14] OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology,1985,20(2/3):163-178.
    [15] 汤家喜, 朱永乐, 刘悦, 等.生物炭对农业面源污染物中农药分子的吸附性能研究[J]. 环境工程技术学报,2020,10(6):1057-1062.

    TANG J X, ZHU Y L, LIU Y, et al. Research on adsorption properties of biochar for pesticide molecules of agricultural non-point source pollutants[J]. Journal of Environmental Engineering Technology,2020,10(6):1057-1062.
    [16] SEN N, DAREKAR M, SIRSAT P, et al. Recovery of uranium from lean streams by extraction and direct precipitation in microchannels[J]. Separation and Purification Technology,2019,227:115641. doi: 10.1016/j.seppur.2019.05.083
    [17] ZHAO G X, LI J X, REN X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology,2011,45(24):10454-10462.
    [18] ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics:PCCP,2013,15(7):2321-2327. doi: 10.1039/c2cp44593j
    [19] 石万里, 赵泽华, 叶飞, 等.酸改性凹凸棒土处理含铜废水的试验研究[J]. 环境工程技术学报,2018,8(2):169-175.

    SHI W L, ZHAO Z H, YE F, et al. Experimental study on adsorption of copper containing wastewater by modified attapulgite[J]. Journal of Environmental Engineering Technology,2018,8(2):169-175.
    [20] KUCHERENKO M, IZMODENOVA S V, KRUCHININ N, et al. Change in the kinetics of delayed annihilation fluorescence during rearrangement of polymer-chain structure in a nanocavity of a solid adsorbent[J]. High Energy Chemistry,2009,43:592-598. doi: 10.1134/S0018143909070169
    [21] 王洁. 多巴胺化组装体的构建、功能化及应用[D]. 上海: 上海交通大学, 2016.
    [22] ZHANG X H, LEI W N, YE X, et al. A facile synthesis and characterization of graphene-like WS2 nanosheets[J]. Materials Letters,2015,159:399-402. doi: 10.1016/j.matlet.2015.07.044
    [23] SAVVIN S B. Analytical use of arsenazo Ⅲ: determination of thorium, zirconium, uranium and rare earth elements[J]. Talanta,1961,8(9):673-685. doi: 10.1016/0039-9140(61)80164-1
    [24] ZHANG Z, DONG Z, DAI Y, et al. Amidoxime-functionalized hydrothermal carbon materials for uranium removal from aqueous solution[J]. RSC Advances,2016,6(104):102462-102471. doi: 10.1039/C6RA21986A
    [25] SINGH S, BAJWA B S, KAUR I. (Zn/Co)-zeolitic imidazolate frameworks: room temperature synthesis and application as promising U(Ⅵ) scavengers: a comparative study[J]. Journal of Industrial and Engineering Chemistry,2021,93:351-360. doi: 10.1016/j.jiec.2020.10.012
    [26] 史济斌, 刘国杰.评Freundlich吸附等温式的推导[J]. 大学化学,2015,30(3):76-79. doi: 10.3866/pku.DXHX2010376

    SHI J B, LIU G J. The derivation of freundlich adsorption isotherm[J]. University Chemistry,2015,30(3):76-79. doi: 10.3866/pku.DXHX2010376
    [27] SHARMA S, BHAGAT S, SINGH J, et al. Temperature dependent photoluminescence from WS2 nanostructures[J]. Journal of Materials Science:Materials in Electronics,2018,29(23):20064-20070. doi: 10.1007/s10854-018-0137-3
    [28] HAZARIKA S J, MOHANTA D. Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green[J]. Applied Physics A,2017,123(5):1-10.
    [29] 田晓冬, 前田宁.N-异丙基丙烯酰胺共聚物的合成及温敏性[J]. 高分子材料科学与工程,2010,26(4):29-32.

    TIAN X D, QIAN T N. Synthesis and thermo-sensitive research of N-isopropylacrylamide copolymers[J]. Polymer Materials Science & Engineering,2010,26(4):29-32.
    [30] 刘彦静, 曾小兵, 代朝猛, 等.石墨烯纳米复合材料在水处理中的应用研究进展[J]. 材料导报,2013,27(7):127-130.

    LIU Y J, ZENG X B, DAI C M, et al. Progress in the applied research of graphene nanocomposites in water treatment[J]. Materials Review,2013,27(7):127-130.
    [31] SONG W C, WANG X X, WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(1):398-406. doi: 10.1039/C4CP04289A
    [32] BAYRAMOĞLU G, ÇELIK G, ARICA M Y. Studies on accumulation of uranium by fungus Lentinus sajor-caju[J]. Journal of Hazardous Materials,2006,136(2):345-353. doi: 10.1016/j.jhazmat.2005.12.027
    [33] LIANG X F, XU Y M, WANG L, et al. Sorption of Pb2+ on mercapto functionalized sepiolite[J]. Chemosphere,2013,90(2):548-555. doi: 10.1016/j.chemosphere.2012.08.027
    [34] LIU S J. Cooperative adsorption on solid surfaces[J]. Journal of Colloid and Interface Science,2015,450:224-238. doi: 10.1016/j.jcis.2015.03.013
    [35] WANG F H, LIU Q, LI R M, et al. Selective adsorption of uranium(Ⅵ) onto prismatic sulfides from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,490:215-221. doi: 10.1016/j.colsurfa.2015.11.045
    [36] MANOS M J, KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society,2012,134(39):16441-16446. doi: 10.1021/ja308028n
    [37] DOU W X, YANG W T, ZHAO X J, et al. Hollow cobalt sulfide for highly efficient uranium adsorption from aqueous solutions[J]. Inorganic Chemistry Frontiers,2019,6(11):3230-3236. ⊗ doi: 10.1039/C9QI00737G
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  182
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20

目录

    /

    返回文章
    返回