A rapid detection method for gasoline detergency and the regulatory scheme
-
摘要:
车用汽油清净性与汽车尾气污染物排放水平、燃油经济性等密切相关。为提高汽油清净性检测效率、提升相关职能部门的监管能力,提出了一种车载移动式多通道汽油清净性快速模拟检测方法(简称多通道快速模拟检测法)。与我国法规推荐的汽油机进气阀沉积物模拟试验方法(简称快速模拟检测法)相比,多通道快速模拟检测法的单个油样检测总耗时降低77.8%,多个油样检测总耗时降低94.4%,检验用油量减少约80%,成本降低约90%;多通道快速模拟检测法与快速模拟检测法具有较好的相关性(皮尔逊相关系数为0.4~0.8),可用于汽油清净性的快速检测。最后,提出了汽油清净性的现场监管检测方案。
Abstract:The detergency of vehicle gasoline is closely related to vehicle exhaust emissions and fuel economy. In order to improve the detection efficiency of gasoline detergency and enhance the supervision ability of relevant functional departments, an on-board multi-channel rapid simulation detection (MCRSD) method of gasoline detergency was proposed. Compared with the rapid simulation detection (RSD) method of gasoline engine inlet valve deposits recommended by the regulations, the total test time for a single sample of the MCRSD method decreased by 77.8%, and the total test time for multiple samples of the method decreased by 94.4%, with 80% reduction in fuel consumption and 90% reduction in cost. The MCRSD method had a good correlation with the RSD method (Pearson correlation coefficient was 0.4-0.8), and could be used for the rapid detection of gasoline detergency. Finally, the on-site supervision and testing scheme of gasoline detergency was proposed.
-
Key words:
- vehicle gasoline /
- detergency /
- simulation detection method /
- gasoline supervision /
- image recognition
-
表 1 车用汽油清净性检测方法对比
Table 1. Comparison of vehicle gasoline detergency detection method
方法来源 检测方法 总耗时 用油
量/L测试成本/
万元GB/T 19230.5—2003 Ford 2.3 L 2周 950 30 GB/T 19230.6—2003 M111 1周 >300 10 GB/T 37322—2019 快速模拟检测法 1.5 h 0.3 0.5 本研究 多通道快速模拟
检测法20 min 0.06 0.05 表 2 皮尔逊相关系数(r)取值与相关强度
Table 2. Pearson correlation coefficient values and correlation strengths
0.8~1.0 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2 极强相关 强相关 中等程度相关 弱相关 弱相关或无相关 -
[1] 化工名词审定委员会. 化工名词(一) 石油炼制·煤制油及天然气·生物质制油[M]. 北京: 科学出版社, 2017. [2] 吕玲玲, 胡京南, 何立强, 等.汽油车技术发展对尾气排放影响研究进展[J]. 环境科学研究,2021,34(2):286-293. doi: 10.13198/j.issn.1001-6929.2020.12.30LÜ L L, HU J N, HE L Q, et al. Research progress on impact of gasoline vehicles technology development on exhaust emission[J]. Research of Environmental Sciences,2021,34(2):286-293. doi: 10.13198/j.issn.1001-6929.2020.12.30 [3] 交通管理局. 2021年全国机动车保有量达3.95亿 新能源汽车同比增59.25%[EB/OL]. (2022-01-11)[2022-07-02]. https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8322369. [4] 生态环境部. 中国移动源环境管理年报(2021)[EB/OL]. (2021-09-10)[2022-07-02]. http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202109/t20210910_920787.shtml. [5] 鲍晓峰.强化机动车污染防治 促进大气灰霾治理[J]. 环境保护,2014,42(24):20-22.BAO X F. Enhancing vehicle emission control and promoting haze pollution mitigation[J]. Environmental Protection,2014,42(24):20-22. [6] 田高友, 熊春华, 张德民.进气阀沉积物模拟试验方法应用研究[J]. 车用发动机,2007(2):89-92. doi: 10.3969/j.issn.1001-2222.2007.02.024TIAN G Y, XIONG C H, ZHANG D M. Study on application of intake valve deposits simulation tests[J]. Vehicle Engine,2007(2):89-92. doi: 10.3969/j.issn.1001-2222.2007.02.024 [7] ZHANG W B, ZHANG Z, MA X, et al. Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions[J]. Applied Energy,2020,262:114538. doi: 10.1016/j.apenergy.2020.114538 [8] AWAD O, XIAO M, KAMIL M, et al. A review of the effects of gasoline detergent additives on the formation of combustion chamber deposits of gasoline direct injection engines[J]. SAE International Journal of Fuels and Lubricants,2021,14(1):13-25. doi: 10.4271/04-14-01-0002 [9] ERSHOV M A, SAVELENKO V D, MAKHOVA U A, et al. New insights on introducing modern multifunctional additives into motor gasoline[J]. Science of the Total Environment,2022,808:152034. doi: 10.1016/j.scitotenv.2021.152034 [10] 黄宪江, 鲍晓峰, 岳欣, 等.燃烧室沉积物对点燃式发动机不同工况下排放的影响[J]. 环境科学研究,2009,22(10):1113-1119. doi: 10.13198/j.res.2009.10.3.huangxj.021HUANG X J, BAO X F, YUE X, et al. Effects of combustion chamber deposits on emissions from a spark ignition engine under different test conditions[J]. Research of Environmental Sciences,2009,22(10):1113-1119. doi: 10.13198/j.res.2009.10.3.huangxj.021 [11] MAGARIL E, MAGARIL R. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline[J]. Environmental Science and Pollution Research International,2016,23(17):17049-17057. doi: 10.1007/s11356-016-6900-1 [12] 朱仁成, 鲍晓峰, 贾明, 等.汽油清净剂对汽车尾气排放影响及其清净性研究[J]. 环境工程技术学报,2016,6(4):307-313. doi: 10.3969/j.issn.1674-991X.2016.04.046ZHU R C, BAO X F, JIA M, et al. Study on impact of gasoline detergent on vehicle emissions and its detergency[J]. Journal of Environmental Engineering Technology,2016,6(4):307-313. doi: 10.3969/j.issn.1674-991X.2016.04.046 [13] JIN B Q, WANG M L, ZHU R C, et al. Evaluation of additives used in gasoline vehicles in China: fuel economy, regulated gaseous pollutants and volatile organic compounds based on both chassis dynamometer and on-road tests[J]. Clean Technologies and Environmental Policy,2021,23(7):1967-1979. doi: 10.1007/s10098-021-02090-3 [14] YUE X, WU Y, HUANG X J, et al. Impact of gasoline engine deposits on light duty vehicle emissions: in-use case study in Beijing, China[J]. Frontiers of Environmental Science & Engineering,2012,6(5):717-724. [15] 董红霞, 刘玉峰, 张春光.汽油清净剂对发动机性能的影响[J]. 石油化工应用,2021,40(11):117-120. doi: 10.3969/j.issn.1673-5285.2021.11.028DONG H X, LIU Y F, ZHANG C G. Influence of gasoline detergent on engine performance[J]. Petrochemical Industry Application,2021,40(11):117-120. doi: 10.3969/j.issn.1673-5285.2021.11.028 [16] 岳欣. 汽油清净性检测技术开发与清净性改善的减排潜力研究[D]. 北京: 清华大学, 2015. [17] 张志颖.汽油清净剂的研究与应用[J]. 交通节能与环保,2010,6(1):42-44. doi: 10.3969/j.issn.1673-6478.2010.01.012 [18] da SILVA M P F, BRITO L R E, HONORATO F A, et al. Classification of gasoline as with or without dispersant and detergent additives using infrared spectroscopy and multivariate classification[J]. Fuel,2014,116:151-157. doi: 10.1016/j.fuel.2013.07.110 [19] RODRIGUES E B L, da SILVA M P F, ROHWEDDER J J R, et al. Determination of detergent and dispensant additives in gasoline by ring-oven and near infrared hypespectral imaging[J]. Analytica Chimica Acta,2015,863:9-19. doi: 10.1016/j.aca.2014.12.052 [20] American Society for Testing and Materials. Standard test method for dynamometer evaluation of unleaded spark-ignition engine fuel for intake valve deposit formation: ASTM D6201[S]. American Society for Testing and Materials, 2003. [21] 交通部. 评价汽油清净剂使用效果的试验方法 第5部分: 汽油清净剂对汽油机进气阀和燃烧室沉积物生成倾向影响的发动机台架试验方法: GB/T 19230.5—2003[S]. 北京: 中国标准出版社, 2004. [22] The Coordinating European Council for the Development of Performance Tests for Fuels, Lubricants and Other Fluids. Deposit forming tendency on intake valves: CEC F-20-98[S]. The Coordinating European Council for the Development of Performance Tests for Fuels, Lubricants and Other Fluids, 1998. [23] 中国石油化工集团公司. 评价汽油清净剂使用效果的试验方法 第6部分: 汽油清净剂对汽油机进气阀和燃烧室沉积物生成倾向影响的发动机台架试验方法(M111法): GB/T 19230.6—2003[S]. 北京: 中国标准出版社, 2004. [24] MARTIN D P, UNSWORTH J F. The M111 engine CCD and emissions test: is it relevant to real-world vehicle data[C]//SAE Technical Paper Series. Warrendale: SAE International, 2002. [25] The Coordinating European Council for the Development of Performance Tests for Fuels, Lubricants and Other Fluids. Inlet valve cleanliness in the MB M102 E engine: CEC F-05-93[S]. The Coordinating European Council for the Development of Performance Tests for Fuels, Lubricants and Other Fluids, 1993. [26] 国家市场监督管理总局, 中国国家标准化管理委员会. 汽油清净性评价 汽油机进气阀沉积物模拟试验法: GB/T 37322—2019[S]. 北京: 中国质检出版社, 2019. [27] 鲍晓峰, 张德民, 李荣, 等. 汽油清净性快速检测方法和设备: CN101666759A[P]. 2010-03-10. [28] PRION S, HAERLING K A. Making sense of methods and measurement: Pearson product-moment correlation coefficient[J]. Clinical Simulation in Nursing,2014,10(11):587-588. □ doi: 10.1016/j.ecns.2014.07.010