Evaluation of habitat restoration effect based on fish spawning requirements
-
摘要:
根据鱼类产卵需求对工程修复效果开展评价对掌握栖息地状态和指导工程设计极其重要。以黑水河为实例,从鱼类产卵的生境需求出发,结合现场监测和数值模拟方法量化产卵栖息地的参照状态,构建指标体系进行河流鱼类产卵期栖息地质量评价,以获得修复工程对鱼类产卵生境真实的修复效果。结果表明:2019—2021年黑水河产卵期的鱼类栖息地综合评价得分分别为63.04、83.52与83.52,鱼类产卵栖息地得到改善,评价结果表明生态修复工程对产卵栖息地有明显修复效果;黑水河不同河段鱼类产卵栖息地质量空间分布上呈现出修复前下游河段(R4~R6)优于上游河段(R1~R3)的特征,修复后不同河段评分均有不同程度的增加,增幅为21.33%~59.15%;通过对敏感因子进行溯源可知,修复前黑水河鱼类产卵期栖息地质量主要受河流连通性和水力条件限制,修复后连通性得到大幅度改善,但水体流速和弗劳德数与保护鱼类产卵的偏好状态仍具有一定差距,后期修复工作应结合鱼类产卵喜好针对水体流态进行局部塑造和改善。
Abstract:It is vital to evaluate the restoration effect according to the spawning needs of fish to master the habitat status and guide the project design. Taking the Heishui River as an example and starting from the habitat requirements of fish spawning, in order to obtain the real restoration effect of the restoration project on fish spawning habitat, the reference status of spawning habitat was quantified through on-site monitoring of real spawning sites and numerical simulation. An index system was constructed to evaluate the quality of fish spawning habitat. The results showed that the comprehensive evaluation scores of fish habitat in the spawning period of the Heishui River from 2019 to 2021 were 63.04, 83.52 and 83.52, respectively, indicating that the fish spawning habitat had been improved year by year. The evaluation results showed that the ecological restoration project had an obvious effect on the restoration of the spawning habitat. Moreover, the spatial distribution of fish spawning habitat quality in different reaches of the Heishui River showed that the downstream reach (R4-R6) before restoration was better than the upstream reach (R1-R3). After restoration, the scores of different reaches increased in varying degrees, with an increase of 21.33%-59.15%. Through tracing the source of sensitive factors, it could be seen that the habitat quality of fish spawning in the Heishui River before restoration was mainly limited by river connectivity and hydraulic conditions, and the connectivity had been greatly improved after restoration. However, there was still a certain gap between the water flow velocity and Froude number and the preference for protecting fish spawning. In the later restoration work, local shaping and improvement of water flow pattern should be carried out according to the preference of fish spawning.
-
表 1 各河段分区修复技术特点
Table 1. Characteristics of restoration technologies in each river section
河段分区 范围及河段长度 河段修复特点 R1 苏家湾坝上—松新坝址(约13 km) 下泄生态流量、新建下泄流量保障措施和监控设施 R2 松新坝址—松新厂房(约8 km) 下泄生态流量、新建下泄流量保障措施和监控设施;减水河段生境修复、鱼类产卵喜好的砂砾石质铺设、水力微生境塑造等;修建松新鱼道 R3 松新厂房—老木河厂房(约13 km) 拆除老木河闸坝;针对黑水河长薄鳅、短须裂腹鱼、齐口裂腹鱼等保护鱼种进行增殖放流 R4 老木河厂房—825 m回水点(约10 km) R5 825 m回水点—765 m回水点(约10 km) R6 765 m回水点—金沙江汇口(约20 km) 表 2 评价指标及其生态学意义
Table 2. Evaluation indicators and their ecological significance
目标层 要素层 指标层 指标生态学意义 水文情势
特征指标(A1)水文情势
(B1)流量过程相似度(C1) 提供鱼类产卵信号 河道连通性
特征指标(A2)河道连通性(B2) 水面宽率(C2) 反映鱼类在河道横向
活动空间综合连通系数(C3) 反映纵向上鱼类洄游
通道连通性河流水质
特征指标(A3)水质特征
(B3)水温(C4) 决定了鱼类产卵行为
发生的时间含沙量(C5) 影响黏性鱼卵的附着;高含沙量的水流会对鱼类、鱼卵造成物理伤害[21] 溶解氧(C6) 影响鱼类呼吸、运动,影响水体中藻类的
光合作用和生长河流水力
特征指标(A4)空间形态
(B4)水深(C7) 反映鱼类产卵空间大小 运动学特征(B5) 流速(C8) 刺激鱼类产卵 动力学特征(B6) 弗劳德数(C9) 反映鱼类产卵生境的
水流状态[22]Table 3. Relationship between mood operator and relative membership degree of quantitative scale
语气算子 定量标度 相对隶属度 同样 0.5 1 同样-稍稍 0.525 0.905 稍稍 0.55 0.818 稍稍-略微 0.575 0.739 略微 0.6 0.667 略微-较为 0.625 0.6 较为 0.65 0.538 较为-明显 0.675 0.481 明显 0.7 0.429 明显-显著 0.725 0.379 显著 0.75 0.333 显著-十分 0.775 0.29 十分 0.8 0.25 十分-非常 0.825 0.212 非常 0.85 0.176 非常-极其 0.875 0.143 极其 0.9 0.111 极其-极端 0.925 0.081 极端 0.95 0.053 极端-无可比拟 0.975 0.026 无可比拟 1 0 注:语气位于2个语气算子之间时,定量标度由二者均值得到。 表 4 河流栖息地质量评价权重
Table 4. Evaluation weight of river habitat quality
目标层 要素层 指标层 指标层权重计算结果 A1 B1 C1 0.239 A2 B2 C2 0.132 C3 0.132 A3 B3 C4 0.058 C5 0.058 C6 0.058 A4 B4 C7 0.103 B5 C8 0.126 B6 C9 0.093 表 5 各指标参照状态
Table 5. Evaluation criterion of each indicator
评价指标 评价标准 Ⅰ(优) Ⅱ(良) Ⅲ(一般) Ⅳ(较差) Ⅴ(极差) C1 [0.8,1.0] [0.6,0.8) [0.4,0.6) [0.2,0.4) [0,0.2) C2/ % [90,100] [80,90) [50,80) [20,50) [0,20) C3 [0.8,1.0] [0.6,0.8) [0.5,0.6) [0.3,0.5) [0,0.3) C4/℃ [11.4,22.3) [11.4,22.3) [11.4,22.3) C4<11.4或C4≥22.3 C4<11.4或C4≥22.3 C5/(mg/L) <2685 <2685 <2685 ≥2685 ≥2685 C6 0 1 2 3 4 C7/m [0.3,1.0) [1,1.5) [1.5,2.0) [2.0,2.5) C7≥2.5或[0,0.3) C8/(m/s) (0.3,0.5) [0.5,0.6) 或(0,0.3] [0.5,1.0) [1.0,1.4) C8≤0或C8≥1.4 C9 [0,0.4) [0.4,0.6) [0.4,0.6) ≥0.6 ≥0.6 表 6 栖息地多断面Ci综合评价标准分级
Table 6. Comprehensive rating standard of multi sections of habitat
分级 标准 Ⅰ(优) Ⅰ~Ⅲ级占比≥90% Ⅱ(良) Ⅰ~Ⅲ级占比为75%~90% Ⅲ(一般) Ⅰ~Ⅲ级占比<75%,且Ⅴ级占比<20% Ⅳ(较差) Ⅰ~Ⅲ级占比<75%,且Ⅴ级占比为20%~40% Ⅴ(极差) Ⅰ~Ⅲ级占比<60%,且Ⅴ级占比≥40% 表 7 全河段各指标评价结果
Table 7. Evaluation grade of each indicator in the whole river section
评价指标 评价等级 2019年 2020年 2021年 C1 Ⅱ Ⅰ Ⅰ C2 Ⅱ Ⅱ Ⅰ C3 Ⅲ Ⅰ Ⅰ C4 Ⅰ Ⅰ Ⅰ C5 Ⅱ Ⅰ Ⅰ C6 Ⅰ Ⅰ Ⅰ C7 Ⅰ Ⅰ Ⅰ C8 Ⅴ Ⅳ Ⅳ C9 Ⅳ Ⅳ Ⅳ -
[1] 杨宇, 严忠民, 乔晔.河流鱼类栖息地水力学条件表征与评述[J]. 河海大学学报(自然科学版),2007,35(2):125-130.YANG Y, YAN Z M, QIAO Y. Description and review of hydraulic conditions of fish habitats[J]. Journal of Hohai University (Natural Sciences),2007,35(2):125-130. [2] 王西琴. 河流生态需水理论、方法与应用[M]. 北京: 中国水利水电出版社, 2007. [3] 罗华超. 生态修复理论在河流整治中的应用与研究[D]. 河南: 华北水利水电学院, 2010. [4] 常理, 彭瑞, 王火云.河流水工程开发鱼类栖息地生态流修复技术探讨[J]. 环境与发展,2020,32(12):186-187. doi: 10.16647/j.cnki.cn15-1369/X.2020.12.092CHANG L, PENG R, WANG H Y. Discussion on restoration technology of fish habitat ecological flow impacted by river engineering[J]. Environment and Development,2020,32(12):186-187. doi: 10.16647/j.cnki.cn15-1369/X.2020.12.092 [5] 韩琦, 谈广鸣, 付湘, 等.河流环境流量计算方法及其应用[J]. 武汉大学学报(工学版),2018,51(3):189-197. doi: 10.14188/j.1671-8844.2018-03-001HAN Q, TAN G M, FU X, et al. Calculation methods of river environmental flow and their applications[J]. Engineering Journal of Wuhan University,2018,51(3):189-197. doi: 10.14188/j.1671-8844.2018-03-001 [6] 李若男. 鱼类生境模型及河流生态流量研究[D]. 北京: 中国科学院大学, 2010. [7] 侯俊, 黄喻威, 苗令占, 等.基于鱼类栖息地需求的雅鲁藏布江中游环境流量计算[J]. 水资源保护,2020,36(4):8-12. doi: 10.3880/j.issn.1004-6933.2020.04.002HOU J, HUANG Y W, MIAO L Z, et al. Calculating environmental flows in middle reach of Yarlung Tsangpo River based on fish habitat requirements[J]. Water Resources Protection,2020,36(4):8-12. doi: 10.3880/j.issn.1004-6933.2020.04.002 [8] XU Z H, YIN X N, SUN T, et al. Labyrinths in large reservoirs: an invisible barrier to fish migration and the solution through reservoir operation[J]. Water Resources Research,2017,53(1):817-831. doi: 10.1002/2016WR019485 [9] 吴阿娜. 河流健康评价: 理论、方法与实践[D]. 上海: 华东师范大学, 2008. [10] PAPANICOLAOU A N T, ELHAKEEM M, DERMISIS D, et al. Evaluation of the Missouri River shallow water habitat using a 2D-hydrodynamic model[J]. River Research and Applications,2011,27(2):157-167. doi: 10.1002/rra.1344 [11] ZHU Z X, LI Y, LI K F, et al. Study of quality maintenance of fish habitats in small- and medium-sized mountain rivers with low flow rate[J]. Ecological Engineering,2020,147:105780. doi: 10.1016/j.ecoleng.2020.105780 [12] 李海霞, 韩丽花, 蔚青, 等.基于灰色关联分析法的辽河保护区河流水生态健康评价[J]. 环境工程技术学报,2020,10(4):553-561. doi: 10.12153/j.issn.1674-991X.20200034LI H X, HAN L H, YU Q, et al. Assessment on river water ecological health based on grey relation analysis in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(4):553-561. doi: 10.12153/j.issn.1674-991X.20200034 [13] 温泉, 马迎群, 秦延文, 等.成渝地区中小河流水生态环境保护存在的问题与对策[J]. 环境工程技术学报,2022,12(2):493-499. doi: 10.12153/j.issn.1674-991X.20210639WEN Q, MA Y Q, QIN Y W, et al. Problems and countermeasures for water ecological environment protection of small and medium-sized rivers in Chengdu-Chongqing area[J]. Journal of Environmental Engineering Technology,2022,12(2):493-499. doi: 10.12153/j.issn.1674-991X.20210639 [14] 曹欠欠, 王兴科.河流生态修复效果评价指标体系研究[J]. 环保科技,2014,20(2):24-30. doi: 10.3969/j.issn.1674-0254.2014.02.008CAO Q Q, WANG X K. Study on the evaluation index system of river ecological restoration[J]. Environmental Protection and Technology,2014,20(2):24-30. doi: 10.3969/j.issn.1674-0254.2014.02.008 [15] 韦章平, 周正萍. 建立河流生态修复评价指标体系[N]. 中国水利报, 2011-05-05(6). [16] 孟祥军.大伙房水库涵养区河流生态修复综合措施示范及修复效果定量评价研究[J]. 水利规划与设计,2020(6):8-14. doi: 10.3969/j.issn.1672-2469.2020.06.002MENG X J. Study on demonstration of comprehensive measures for river ecological restoration in water conservation areas of Dahuofang Reservoir and quantitative evaluation of its effectiveness[J]. Water Resources Planning and Design,2020(6):8-14. doi: 10.3969/j.issn.1672-2469.2020.06.002 [17] 李诗阳. 北京市永定河郊野段生态修复效果评价[D]. 北京: 北京林业大学, 2016. [18] 夏霆, 朱伟, 姜谋余, 等.城市河流栖息地评价方法与应用[J]. 环境科学学报,2007,27(12):2095-2104. doi: 10.3321/j.issn:0253-2468.2007.12.026XIA T, ZHU W, JIANG M Y, et al. Assessment of urban river habitats: application and methodology[J]. Acta Scientiae Circumstantiae,2007,27(12):2095-2104. doi: 10.3321/j.issn:0253-2468.2007.12.026 [19] LIU Q Y, LI J, AN R D, et al. Ecohydraulogical characteristic index system of Schizopygopsis younghusbandi during spawning periods in the Yarlung Tsangpo River[J]. International Journal of Environmental Research and Public Health,2018,15(9):1949. doi: 10.3390/ijerph15091949 [20] 林俊强, 彭期冬, 任杰, 等.赤水河与金沙江下游河段鱼类生境条件的相似性分析[J]. 淡水渔业,2014,44(6):93-99. doi: 10.3969/j.issn.1000-6907.2014.06.016LIN J Q, PENG Q D, REN J, et al. Similarity analysis of fish habitats between the Chishui River and downstream reaches of the Jinsha River[J]. Freshwater Fisheries,2014,44(6):93-99. doi: 10.3969/j.issn.1000-6907.2014.06.016 [21] STAUB E. Effects of sediment flushing on fish and invertebrates in Swiss Alpine Rivers[C]//International Workshop and Symposium on Reservoir Sedimentation Management. Toyama: WEC, 2000: 185-193. [22] MOIR H J, SOULSBY C, YOUNGSON A. Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Girnock Burn, Scotland[J]. Fisheries Management and Ecology,1998,5(3):241-254. doi: 10.1046/j.1365-2400.1998.00105.x [23] 陈守煜. 复杂水资源系统优化模糊识别理论与应用[M]. 长春: 吉林大学出版社, 2002. [24] XIN L L, GENG H, WANG Y M, et al. General limited information diffusion method of small-sample information analysis in insurance[J]. Journal of Shanghai University (English Edition),2007,11(3):259-262. doi: 10.1007/s11741-007-0314-2 [25] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. [26] 国家能源局. 水电水利工程水文计算规范: DL/T 5431—2009[S]. 北京: 中国电力出版社, 2009. [27] 国家能源局. 水电工程生态流量计算规范: NB/T 35091—2016[S]. 北京: 中国电力出版社, 2016. [28] 王淑英, 高永胜, 丁春梅.基于模糊相关度的模糊聚类有效性检验方法[J]. 水文,2006,26(4):39-42. doi: 10.3969/j.issn.1000-0852.2006.04.008 [29] 王凯利. 绿色小水电评价指标体系与退出机制研究[D]. 成都: 四川大学, 2019. [30] 陈明千, 脱友才, 李嘉, 等.鱼类产卵场水力生境指标体系初步研究[J]. 水利学报,2013,44(11):1303-1308. doi: 10.13243/j.cnki.slxb.2013.11.008CHEN M Q, TUO Y C, LI J, et al. Preliminary study on index system describing hydraulic characteristics of fish spawning ground[J]. Journal of Hydraulic Engineering,2013,44(11):1303-1308. doi: 10.13243/j.cnki.slxb.2013.11.008 [31] LIU Q Y, ZHANG P, CHENG B X, et al. Incorporating the life stages of fish into habitat assessment frameworks: a case study in the Baihetan Reservoir[J]. Journal of Environmental Management,2021,299:113663. ⊕ doi: 10.1016/j.jenvman.2021.113663