Research on greenhouse gas emissions accounting methods in environmental impact assessment of construction projects: a case of thermal power project
-
摘要:
对现行温室气体排放核算方法标准和指南进行了系统梳理,分析了现行核算方法的差异,提出了其纳入环境影响评价制度存在的问题,并以火电行业为例,提出了火电建设项目环境影响评价中碳排放核算边界、计算方法和核算参数的选取原则。结果表明:现行温室气体排放核算方法在核算边界、核算范围、核算因子和计算方法上均有一定差异。现行核算方法不能直接适用于建设项目环境影响评价工作,存在无法准确获取核算参数、核算边界不符合环评要求、各指南间推荐参数不一等问题。对于火电行业,从纳入考虑的碳排放源来看,化石燃料燃烧排放占比为93.5%~99.8%,开展环境影响评价时可重点考虑发电机组燃料燃烧排放,忽略其他过程排放;在计算方法上,基于元素碳含量核算二氧化碳结果较为准确,误差不超过10%,基于低位发热量核算误差达18%~30%,开展环境影响评价时建议基于元素碳含量开展核算,燃煤电厂的燃料消耗量建议选用环境影响评价阶段预估值,元素碳含量建议选用环境影响评价阶段设计煤样实测值,避免使用低位发热量和单位热值含碳量的缺省值,碳氧化率建议直接选取缺省值。
Abstract:The current greenhouse gas (GHG) emissions accounting method standards and guidelines were systematically sorted out, the differences of the current accounting methods were analyzed, the problems of the current accounting methods being incorporated into the environmental impact assessment (EIA) system were put forward, and the thermal power industry was taken as an example to put forward the carbon emission accounting boundary, calculation method and principles for selecting parameters in the EIA of thermal power construction projects. The results showed that the current GHG emissions accounting methods had certain discrepancies in accounting boundaries, scopes, factors and calculation methods. The current accounting methods could not be directly applied to the EIA of construction projects, and there were problems such as the inability to obtain the parameters accounting accurately, the inconformity of calculation boundaries with the requirements of EIA, and the difference in the recommended parameters among various guidelines. For the thermal power industry, from the perspective of the carbon emission sources considered, the fossil fuel combustion emissions accounted for 93.5%-99.8%. When carrying out the EIA, the fuel combustion emissions of generator sets could be mainly considered and other process emissions could be excluded. In terms of calculation methods, the calculation results of carbon dioxide based on elemental carbon content were relatively accurate, with an calculation error not exceeding 10%, while the error based on low-level calorific value was 18%-30%. It was recommended to carry out accounting based on elemental carbon content when conducting EIA. It was suggested to select the estimated value at the EIA stage for the fuel consumption of the coal-fired power plant, and select the measured value of the designed coal samples at the EIA stage for the elemental carbon content, avoiding using the default value of low-level calorific value and carbon content per unit calorific value. Also, it was recommended to directly select the default value for the carbon oxidation rate.
-
表 1 现行温室气体排放核算体系对比一览
Table 1. List of comparison of existing GHG emissions accounting systems
管理
层级指南文件
名称管理层次
及作用核算
边界1)纳入考虑的碳排放源 温室气体种类 计算方法 主要核算参数
(以火电行业为例)行业
层面国家发展和改革委员会24个行业碳排放核算指南(《行业指南》) 建立完善温室气体统计核算制度,构建国家、地方、企业三级温室气体排放核算工作体系 企业
法人核算边界内生产系统产生的温室气体排放;净调入电力热力蕴含的间接排放 二氧化碳、甲烷、氧化亚氮、氢氟碳化物、全氟化碳、六氟化硫6种温室气体 核算边界及核算范围内燃料燃烧、生产过程、调入调出电力热力等方面产生的温室气体;参考《IPCC指南》,针对各行业温室气体的不同排放特点,提出排放因子法或物料衡算法;将燃料、生产原料的实际排放特性纳入考虑,细化了参与温室气体排放量计算的特性参数,并建议企业使用实测值作为排放因子,或使用推荐的缺省值 化石燃料消耗量,化石燃料低位发热值和单位热值含碳量碳氧化率,脱硫剂消耗量,脱硫剂排放因子,电网排放因子 国家标准化管理委员会“1+12”碳排放核算标准(《行业标准》) 二氧化碳、甲烷、氧化亚氮、氢氟碳化物、全氟化碳、六氟化硫和三氟化氮7种温室气体 化石燃料消耗量,化石燃料低位发热值和单位热值含碳量碳氧化率,脱硫剂消耗量,脱硫剂排放因子,电网排放因子 碳排放
权交易《企业温室气体排放核算方法与报告指南 发电设施(2022年修订版)》(《发电设施指南》) 推进全国碳排放权交易市场建设,试点纳入发电行业 发电
设施化石燃料燃烧产生的二氧化碳直接排放;购入电力蕴含的间接排放 二氧化碳 在《发电设施指南》的核算边界及核算范围内,核算方法与《行业指南》一致;排放因子数值优先采用燃料特性参数的实测值,或使用《发电设施指南》规定的惩罚性缺省值 化石燃料消耗量,化石燃料低位发热值、单位热值含碳量(或元素碳含量),碳氧化率,脱硫剂消耗量,脱硫剂排放因子,电网排放因子 1)核算边界为与报告主体的生产经营活动相关的温室气体排放的范围。 表 2 现行电网排放因子对比一览
Table 2. Comparison list of current power grid emission factors
排放因子/〔kg/(kW·h)〕 发布机构 发布年份 文件名称 说明 华北区域,1.26;东北区域,1.096;华东区域,0.928;海南省,0.917;华中区域,0.801;西北区域,0.977;南方区域,0.714 国家发展和改革
委员会2011 省级温室气体清单编制指南(试行) 引用2005年我国区域电网单位
供电平均二氧化碳排放量华北区域,0.896 7;东北区域,0.818 9;华东区域,0.712 9;华中区域,0.595 5;西北区域,0.686 0;南方区域,0.574 8 国家应对气候
变化战略研究和
国际合作中心2014 2011年中国区域电网平均
二氧化碳排放因子华北区域,0.884 3;东北区域,0.776 9;华东区域,0.703 5;华中区域,0.525 7;西北区域,0.667 1;南方区域,0.527 1 2012年中国区域电网平均
二氧化碳排放因子北京,0.775 7;河南,0.806 3;天津,0.891 7;湖北,0.352 6;河北,0.898 1;湖南,0.516 6;山西,0.848 8;重庆,0.574 4;内蒙古,0.929 2;四川,0.247 5;山东,0.887 8;广东,0.591 2;辽宁,0.775 3;广西,0.494 8;吉林,0.721 4;贵州,0.494 9;黑龙江,0.797 0;云南,0.306 3;上海,0.624 1;海南,0.685 5;江苏,0.749 8;陕西,0.769 0;浙江,0.664 7;甘肃,0.572 9;安徽,0.809 2;青海,0.232 3;福建,0.551 4;宁夏,0.778 9;江西,0.633 6;新疆,0.789 8 2012年省级电网年平均
二氧化碳排放因子0.581 01) 生态环境部 2022 《企业温室气体排放核算方法与报告指南 发电设施(2022年修订版)》 2022年全国平均
电网排放因子1)单位为t/(MW·h)。 表 3 火电项目样本选取说明
Table 3. Sample selection instructions for thermal power projects
省(区、市) 企业数量/家 规模/MW 机组类型 上海 10 2×300~2×1 000 均为燃煤电厂 浙江 10 燃煤电厂(锅炉)规模为27~120,燃气电厂分别为458、115 8家燃煤电厂(锅炉),2家燃气电厂 广西 12 15~2×350 均为燃煤电厂
(锅炉)吉林 12 21~2×350 均为燃煤电厂
(锅炉)内蒙古 52 燃煤电厂(锅炉)规模为7~4×630,燃气电厂分别为458、115 50家燃煤电厂(锅炉),2家燃气电厂 新疆 4 2家为2×660,2家为4×660 均为燃煤电厂 表 4 典型企业化石燃料燃烧二氧化碳排放量计算结果汇总
Table 4. Summary of calculation results of carbon dioxide emissions from fossil fuel combustion in typical enterprises
企业名称 规模/
MW燃料消耗量
(环评预
估值)/t方法一(低位发热量采用
环评实测值)方法一(均采用
缺省值)方法二 核查报告
(实测值)/t低位发热
值/(GJ/t)单位热值含碳量/(t/GJ) 二氧化碳排放量/t 低位发热
值/(GJ/t)单位热值含碳量/(t/GJ) 二氧化碳排放量/t 元素碳含量/% 二氧化碳排放量/t 某电厂项目1 2×660 3 125 100 17.742 0.033 56 6 822 757 26.7 0.033 56 10 267 591 55.65 6 376 767 5 838 377 某电厂项目2 2×660 3 350 600 19.567 0.033 56 8 067 523 26.7 0.033 56 11 008 477 54.89 6 743 529 6 209 300 某电厂项目3 4×660 6 717 300 18.219 0.033 56 15 059 573 26.7 0.033 56 22 069 850 53.04 13 063 805 12 202 472 某电厂项目4 4×660 6 369 000 18.963 0.033 56 14 861 809 26.7 0.033 56 20 925 502 53.94 12 596 608 12 594 453 注:环评阶段燃料消耗量为预估值,取项目设计耗煤量。为了避免燃料消耗量不同带来的误差,核算时统一采用环评阶段预估值。 -
[1] SHUKLA P R, SKEG J, BUENDIA E C, et al. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: chapter 1: framing and context[R]. Geneva: IPCC, 2019. [2] 杨轶婷, 徐鹤, 张毅.将气候变化纳入我国环境影响评价体系的思考[J]. 环境保护,2021,49(12):12-16.YANG Y T, XU H, ZHANG Y. Thoughts on integrating climate change into environmental impact assessment system in China[J]. Environmental Protection,2021,49(12):12-16. [3] 陈思宇.论将适应气候变化的要求纳入建设项目环境影响评价制度[J]. 重庆理工大学学报(社会科学),2019,33(4):27-37.CHEN S Y. On the adaptation to climate change requirements into the environmental impact assessment system of construction project[J]. Journal of Chongqing University of Technology (Social Science),2019,33(4):27-37. [4] 匡舒雅, 曹颖.在环境影响评价中考虑温室气体排放的可行性分析[J]. 环境影响评价,2021,43(5):9-14.KUANG S Y, CAO Y. Feasibility analysis of considering greenhouse gas emissions in environmental impact assessment[J]. Environmental Impact Assessment,2021,43(5):9-14. [5] ENRÍQUEZ-DE-SALAMANCA Á, MARTÍN-ARANDA R M, DÍAZ-SIERRA R. Consideration of climate change on environmental impact assessment in Spain[J]. Environmental Impact Assessment Review,2016,57:31-39. doi: 10.1016/j.eiar.2015.11.009 [6] MORGAN R K. Environmental impact assessment: the state of the art[J]. Impact Assessment and Project Appraisal,2012,30(1):5-14. doi: 10.1080/14615517.2012.661557 [7] 姜华, 李艳萍, 高健, 等.关于统筹建立二氧化碳排放总量控制制度的思考[J]. 环境工程技术学报,2022,12(1):1-5. doi: 10.12153/j.issn.1674-991X.20210778JIANG H, LI Y P, GAO J, et al. Thoughts on the overall establishment of total carbon dioxide emission control system[J]. Journal of Environmental Engineering Technology,2022,12(1):1-5. doi: 10.12153/j.issn.1674-991X.20210778 [8] 刘业业. 石油炼制工业过程碳排放核算及环境影响评价[D]. 济南: 山东大学, 2020. [9] 马彩虹, 赵晶, 谭晨晨.基于IPCC方法的湖南省温室气体排放核算及动态分析[J]. 长江流域资源与环境,2015,24(10):1786-1792. doi: 10.11870/cjlyzyyhj201510022MA C H, ZHAO J, TAN C C. Accounting and dynamic analysis of greenhouse gas emission in Hunan Province based on the IPCC method[J]. Resources and Environment in the Yangtze Basin,2015,24(10):1786-1792. doi: 10.11870/cjlyzyyhj201510022 [10] KHAN I. Greenhouse gas emission accounting approaches in electricity generation systems: a review[J]. Atmospheric Environment,2019,200:131-141. doi: 10.1016/j.atmosenv.2018.12.005 [11] JING R, CHENG J C P, GAN V J L, et al. Comparison of greenhouse gas emission accounting methods for steel production in China[J]. Journal of Cleaner Production,2014,83:165-172. doi: 10.1016/j.jclepro.2014.07.016 [12] 翁艺斌, 刘双星, 李兴春, 等.中、欧企业层面温室气体排放核算对比研究[J]. 油气与新能源,2021,33(4):22-25.WENG Y B, LIU S X, LI X C, et al. Comparative study on accounting of greenhouse gas emission at the enterprise level in China and Europe[J]. Petroleum and New Energy,2021,33(4):22-25. [13] 刘强, 陈亮, 段茂盛, 等.中国制定企业温室气体核算指南的对策建议[J]. 气候变化研究进展,2016,12(3):236-242.LIU Q, CHEN L, DUAN M S, et al. Policy suggestions for establishing GHG emissions accounting guideline at the enterprise level in China[J]. Climate Change Research,2016,12(3):236-242. [14] 龚昕.企业温室气体排放核算和减碳方案的误区与建议[J]. 环境保护与循环经济,2022,42(1):107-110. doi: 10.3969/j.issn.1674-1021.2022.01.023 [15] 陈健华, 孙亮, 陈亮, 等.国内外企业温室气体排放核算标准的比较分析[J]. 气候变化研究进展,2016,12(6):545-553.CHEN J H, SUN L, CHEN L, et al. The comparative analysis on the national and international greenhouse gas emission accounting standards for the enterprise[J]. Climate Change Research,2016,12(6):545-553. [16] 宋晓晖, 吕晨, 王丽娟, 等.建设项目温室气体环境影响评价方法研究[J]. 环境科学研究,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20SONG X H, LÜ C, WANG L J, et al. Method of greenhouse gas environmental impact assessment for construction projects[J]. Research of Environmental Sciences,2022,35(2):405-413. □ doi: 10.13198/j.issn.1001-6929.2021.11.20