留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道交通轨道不平顺对振动源强环境影响评价研究

岳思

岳思.城市轨道交通轨道不平顺对振动源强环境影响评价研究[J].环境工程技术学报,2022,12(6):1875-1881 doi: 10.12153/j.issn.1674-991X.20220572
引用本文: 岳思.城市轨道交通轨道不平顺对振动源强环境影响评价研究[J].环境工程技术学报,2022,12(6):1875-1881 doi: 10.12153/j.issn.1674-991X.20220572
YUE S.Research on environmental impact assessment of urban rail transit track roughness on vibration source intensity[J].Journal of Environmental Engineering Technology,2022,12(6):1875-1881 doi: 10.12153/j.issn.1674-991X.20220572
Citation: YUE S.Research on environmental impact assessment of urban rail transit track roughness on vibration source intensity[J].Journal of Environmental Engineering Technology,2022,12(6):1875-1881 doi: 10.12153/j.issn.1674-991X.20220572

城市轨道交通轨道不平顺对振动源强环境影响评价研究

doi: 10.12153/j.issn.1674-991X.20220572
基金项目: 中铁第四勘察设计院集团有限公司科技开发课题(2018K092)
详细信息
    作者简介:

    岳思(1982—),男,高级工程师,硕士,主要从事铁路、城市轨道交通、公路环境影响评价及噪声控制研究,jackyyue123@vip.qq.com

  • 中图分类号: X593

Research on environmental impact assessment of urban rail transit track roughness on vibration source intensity

  • 摘要:

    为研究城市轨道交通不平顺程度的振动环境影响,通过车辆-轨道空间耦合动力学模型和轨道-隧道-土体三维有限元-无限元耦合模型进行仿真,并用振动源强实测数据验证列车运行速度为100~120 km/h、不同轨道不平顺谱条件下的速度修正系数。结果表明:当轨道条件恶劣时,振动环境影响速度修正系数建议值为36.2;当轨道条件一般时,振动环境影响速度修正系数建议值为31.0;当轨道条件较好时,振动环境影响速度修正系数建议值为23.3。

     

  • 图  1  车辆-轨道耦合动力学模型示意

    Figure  1.  Schematic diagram of vehicle-track coupled dynamics model

    图  2  有限元-无限元三维仿真模型

    Figure  2.  Finite element-infinite element three-dimensional simulation model

    图  3  断面1不同运行速度列车引起基底和隧道壁振动加速度1/3倍频程谱均值

    Figure  3.  Mean value of 1/3 octave frequency spectrum of vibration acceleration of base and tunnel wall caused by trains with different operating speeds in section 1

    图  4  断面2不同运行速度列车引起基底和隧道壁振动加速度1/3倍频程谱均值

    Figure  4.  Mean value of 1/3 octave frequency spectrum of vibration acceleration of base and tunnel wall caused by trains with different operating speeds in section 2

    图  5  振动实测与有限元-无限元三维模型仿真源强时域预测结果

    Figure  5.  Measured vibration and simulated source intensity time domain prediction results of finite element-infinite element three-dimensional model

    图  6  测试断面1隧道壁和基底振动加速度1/3倍频程谱对比

    Figure  6.  Comparison of 1/3 octave frequency spectrum of vibration acceleration of the tunnel wall and the base of the test section 1

    图  7  隧道壁上的振动加速度信号时域和1/3倍频程谱结果对比

    Figure  7.  Comparison of vibration acceleration signal in time domain and 1/3 octave spectrum on tunnel wall

    图  8  隧道壁振动源强1/3倍频程谱(美国五级谱+铁科院短波谱)

    Figure  8.  1/3 octave frequency spectrum of vibration source intensity of tunnel wall (U.S. fifth-order spectrum + short-wave spectrum of Academy of Iron Sciences)

    图  9  隧道壁振动源强1/3倍频程谱(美国五级谱+ISO粗糙度谱)

    Figure  9.  1/3 octave frequency spectrum of tunnel wall vibration source intensity (U.S. fifth-order spectrum + ISO roughness spectrum)

    图  10  隧道壁振动源强1/3倍频程谱(美国五级谱)

    Figure  10.  1/3 octave frequency spectrum of tunnel wall vibration source intensity (U.S. fifth-order spectrum)

    表  1  不同轨道不平顺激励条件下速度与最大Z振级

    Table  1.   Velocity and maximum Z vibration level under different orbital irregularity excitation conditions dB 

    项目列车运行速度/(km/h)
    8090100110120
    美国五级谱+铁科院短波不平顺谱75.3975.9376.1077.5279.00
    美国五级谱+ISO粗糙度谱70.0671.0471.6573.0273.21
    美国五级谱64.0764.9365.8466.7567.68
    下载: 导出CSV

    表  2  以不同速度为基准的速度修正系数

    Table  2.   Speed correction coefficients based on different speeds

    v/(km/h)v0/
    (km/h)
    CV
    美国五级谱+
    铁科院短波
    不平顺谱
    美国五级
    谱+ISO
    粗糙度谱
    美国
    五级谱
    HJ 453—
    2018
    908016.8116.4111.8020
    1008019.1618.2617.3320
    11010034.3127.1021.9820
    12010036.1630.7023.2620
    下载: 导出CSV
  • [1] 冯爱军.中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设,2022,42(2):336-341.

    FENG A J. Data statistics and development analysis of urban rail transit in China in 2021[J]. Tunnel Construction,2022,42(2):336-341.
    [2] 刘维宁, 马蒙, 刘卫丰等.我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6):547-559. doi: 10.1360/N092015-00334

    LIU W N, MA M, LIU W F, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica),2016,46(6):547-559. doi: 10.1360/N092015-00334
    [3] 孙晓静, 刘维宁, 张宝才.浮置板轨道结构在城市轨道交通减振降噪上的应用[J]. 中国安全科学学报,2005,15(8):65-69. doi: 10.3969/j.issn.1003-3033.2005.08.016

    SUN X J, LIU W N, ZHANG B C. Applications of floating slab track framework for vibration and noise control in urban rail traffic[J]. China Safety Science Journal,2005,15(8):65-69. doi: 10.3969/j.issn.1003-3033.2005.08.016
    [4] WEI K, YANG Q L, DOU Y L, et al. Experimental investigation into temperature- and frequency-dependent dynamic properties of high-speed rail pads[J]. Construction and Building Materials,2017,151:848-858. doi: 10.1016/j.conbuildmat.2017.06.044
    [5] 胡月琪, 刘倩, 王铮, 等.北京市地铁列车运行引起的建筑室内结构噪声污染特征与评价[J]. 环境工程技术学报,2017,7(5):606-614.

    HU Y Q, LIU Q, WANG Z, et al. Characteristics and evaluation of building indoor ground-borne noise pollution induced by subway in Beijing[J]. Journal of Environmental Engineering Technology,2017,7(5):606-614.
    [6] 谢咏梅, 辜小安, 刘扬.地铁环境影响评价中轨道隔振措施应用效果研究[J]. 环境工程技术学报,2012,2(2):162-166. doi: 10.3969/j.issn.1674-991X.2012.02.024

    XIE Y M, GU X A, LIU Y. Application effect analysis of track vibration isolation measures in subway environmental impact assessment[J]. Journal of Environmental Engineering Technology,2012,2(2):162-166. doi: 10.3969/j.issn.1674-991X.2012.02.024
    [7] 曹宇静.城市轨道交通环境影响评价振动预测模型对比分析[J]. 噪声与振动控制,2017,37(2):192-196.

    CAO Y J. Comparison and analysis of vibration prediction models in environmental impact assessment of urban rail transit[J]. Noise and Vibration Control,2017,37(2):192-196.
    [8] 刘晶晶, 李小敏, 海热提·涂尔逊.快速轨道交通规划环境影响评价方法及实例研究[J]. 环境科学研究,2007(2):136-140. doi: 10.3321/j.issn:1001-6929.2007.02.026

    LIU J J, LI X M, HAIRET T. The method of environmental impact assessment of urban rail transit planning and the case study[J]. Research of Environmental Sciences,2007(2):136-140. doi: 10.3321/j.issn:1001-6929.2007.02.026
    [9] 生态环境部. 环境影响评价技术导则城市轨道交通: HJ 453—2018[S]. 北京: 中国环境科学出版社, 2019.
    [10] AGGESTAM E, NIELSEN J O, BOLMSVIK R. Simulation of vertical dynamic vehicle-track interaction using a two-dimensional slab track model[J]. Vehicle System Dynamics,2018(56):1633-1657.
    [11] MA L X, LIU W N. A numerical train-floating slab track coupling model based on the periodic-fourier-modal method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2018,232(1):315-334. doi: 10.1177/0954409716668552
    [12] 雷晓燕, 邢聪聪, 吴神花.轨道结构中高频振动特性分析[J]. 振动工程学报,2020,33(6):1245-1252. doi: 10.16385/j.cnki.issn.1004-4523.2020.06.016

    LEI X Y, XING C C, WU S H. Mid-and high-frequency vibration characteristics of track structure[J]. Journal of Vibration Engineering,2020,33(6):1245-1252. doi: 10.16385/j.cnki.issn.1004-4523.2020.06.016
    [13] 赵东锋. 磁流变阻尼半主动减振浮置板轨道动力响应分析及其地面振动预测[D]. 成都: 西南交通大学, 2016.
    [14] LEI X Y. Methods for predicting the ambient vibration and noise resulting from rail transit[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2020,234(9):1054-1067. doi: 10.1177/0954409719881860
    [15] GHANGALE D, COLAC A, COSTA P A, el at. A methodology based on structural FEM-BEM and acoustic BEM models in 2.5D for the prediction of reradiated noise in railway-induced ground-borne vibration problems[J]. Journal of Vibration and Acoustics:Transactions of the ASME,2019,141(3):126-137.
    [16] 曲翔宇. 考虑列车系统状态的地铁列车振动源强参数研究[D]. 北京: 北京交通大学, 2020.
    [17] YUE S. Vibration and noise control technology for high-speed railway[J]. International Journal of Vehicle Structures and Systems,2020,11(4):389-392.
    [18] XING M T. A numerical analysis of ground vibration induced by typical rail corrugation of underground subway[J]. Shock and Vibration,2019:8406813.
    [19] 刘章军, 何承高, 张传勇.车辆-轨道垂向耦合系统求解过程的改进算法[J]. 应用数学和力学,2019,40(6):641-649.

    LIU Z J, HE C G, ZHANG C Y. An improved algorithm for solving dynamic responses of vehicle-track vertically coupled systems[J]. Applied Mathematics and Mechanics,2019,40(6):641-649. ⊗
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  204
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2022-09-22

目录

    /

    返回文章
    返回