Research on environmental impact assessment of urban rail transit track roughness on vibration source intensity
-
摘要:
为研究城市轨道交通不平顺程度的振动环境影响,通过车辆-轨道空间耦合动力学模型和轨道-隧道-土体三维有限元-无限元耦合模型进行仿真,并用振动源强实测数据验证列车运行速度为100~120 km/h、不同轨道不平顺谱条件下的速度修正系数。结果表明:当轨道条件恶劣时,振动环境影响速度修正系数建议值为36.2;当轨道条件一般时,振动环境影响速度修正系数建议值为31.0;当轨道条件较好时,振动环境影响速度修正系数建议值为23.3。
Abstract:In order to study the vibration environmental impact of the unevenness of urban rail transit, by applying the vehicle-track space coupling dynamics model and the track-tunnel-soil three-dimensional finite element-infinite element coupling model, and verified with the measured data of vibration source intensity, the speed correction coefficients under the train speed of 100-120 km/h and different track irregularity spectrum conditions was obtained. When the track conditions were severe, the recommended value of correction coefficient of vibration environment influence speed was 36.2; when the track conditions were normal, the recommended value of correction coefficient of vibration environment influence speed was 31.0; when the track conditions were good, the recommended value of correction coefficient of vibration environment influence speed was 23.3. This research could provide a reference and basis for the evaluation of urban rail transit vibration environmental impact and vibration reduction design.
-
表 1 不同轨道不平顺激励条件下速度与最大Z振级
Table 1. Velocity and maximum Z vibration level under different orbital irregularity excitation conditions
dB 项目 列车运行速度/(km/h) 80 90 100 110 120 美国五级谱+铁科院短波不平顺谱 75.39 75.93 76.10 77.52 79.00 美国五级谱+ISO粗糙度谱 70.06 71.04 71.65 73.02 73.21 美国五级谱 64.07 64.93 65.84 66.75 67.68 表 2 以不同速度为基准的速度修正系数
Table 2. Speed correction coefficients based on different speeds
v/(km/h) v0/
(km/h)CV 美国五级谱+
铁科院短波
不平顺谱美国五级
谱+ISO
粗糙度谱美国
五级谱HJ 453—
201890 80 16.81 16.41 11.80 20 100 80 19.16 18.26 17.33 20 110 100 34.31 27.10 21.98 20 120 100 36.16 30.70 23.26 20 -
[1] 冯爱军.中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设,2022,42(2):336-341.FENG A J. Data statistics and development analysis of urban rail transit in China in 2021[J]. Tunnel Construction,2022,42(2):336-341. [2] 刘维宁, 马蒙, 刘卫丰等.我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6):547-559. doi: 10.1360/N092015-00334LIU W N, MA M, LIU W F, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica),2016,46(6):547-559. doi: 10.1360/N092015-00334 [3] 孙晓静, 刘维宁, 张宝才.浮置板轨道结构在城市轨道交通减振降噪上的应用[J]. 中国安全科学学报,2005,15(8):65-69. doi: 10.3969/j.issn.1003-3033.2005.08.016SUN X J, LIU W N, ZHANG B C. Applications of floating slab track framework for vibration and noise control in urban rail traffic[J]. China Safety Science Journal,2005,15(8):65-69. doi: 10.3969/j.issn.1003-3033.2005.08.016 [4] WEI K, YANG Q L, DOU Y L, et al. Experimental investigation into temperature- and frequency-dependent dynamic properties of high-speed rail pads[J]. Construction and Building Materials,2017,151:848-858. doi: 10.1016/j.conbuildmat.2017.06.044 [5] 胡月琪, 刘倩, 王铮, 等.北京市地铁列车运行引起的建筑室内结构噪声污染特征与评价[J]. 环境工程技术学报,2017,7(5):606-614.HU Y Q, LIU Q, WANG Z, et al. Characteristics and evaluation of building indoor ground-borne noise pollution induced by subway in Beijing[J]. Journal of Environmental Engineering Technology,2017,7(5):606-614. [6] 谢咏梅, 辜小安, 刘扬.地铁环境影响评价中轨道隔振措施应用效果研究[J]. 环境工程技术学报,2012,2(2):162-166. doi: 10.3969/j.issn.1674-991X.2012.02.024XIE Y M, GU X A, LIU Y. Application effect analysis of track vibration isolation measures in subway environmental impact assessment[J]. Journal of Environmental Engineering Technology,2012,2(2):162-166. doi: 10.3969/j.issn.1674-991X.2012.02.024 [7] 曹宇静.城市轨道交通环境影响评价振动预测模型对比分析[J]. 噪声与振动控制,2017,37(2):192-196.CAO Y J. Comparison and analysis of vibration prediction models in environmental impact assessment of urban rail transit[J]. Noise and Vibration Control,2017,37(2):192-196. [8] 刘晶晶, 李小敏, 海热提·涂尔逊.快速轨道交通规划环境影响评价方法及实例研究[J]. 环境科学研究,2007(2):136-140. doi: 10.3321/j.issn:1001-6929.2007.02.026LIU J J, LI X M, HAIRET T. The method of environmental impact assessment of urban rail transit planning and the case study[J]. Research of Environmental Sciences,2007(2):136-140. doi: 10.3321/j.issn:1001-6929.2007.02.026 [9] 生态环境部. 环境影响评价技术导则城市轨道交通: HJ 453—2018[S]. 北京: 中国环境科学出版社, 2019. [10] AGGESTAM E, NIELSEN J O, BOLMSVIK R. Simulation of vertical dynamic vehicle-track interaction using a two-dimensional slab track model[J]. Vehicle System Dynamics,2018(56):1633-1657. [11] MA L X, LIU W N. A numerical train-floating slab track coupling model based on the periodic-fourier-modal method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2018,232(1):315-334. doi: 10.1177/0954409716668552 [12] 雷晓燕, 邢聪聪, 吴神花.轨道结构中高频振动特性分析[J]. 振动工程学报,2020,33(6):1245-1252. doi: 10.16385/j.cnki.issn.1004-4523.2020.06.016LEI X Y, XING C C, WU S H. Mid-and high-frequency vibration characteristics of track structure[J]. Journal of Vibration Engineering,2020,33(6):1245-1252. doi: 10.16385/j.cnki.issn.1004-4523.2020.06.016 [13] 赵东锋. 磁流变阻尼半主动减振浮置板轨道动力响应分析及其地面振动预测[D]. 成都: 西南交通大学, 2016. [14] LEI X Y. Methods for predicting the ambient vibration and noise resulting from rail transit[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2020,234(9):1054-1067. doi: 10.1177/0954409719881860 [15] GHANGALE D, COLAC A, COSTA P A, el at. A methodology based on structural FEM-BEM and acoustic BEM models in 2.5D for the prediction of reradiated noise in railway-induced ground-borne vibration problems[J]. Journal of Vibration and Acoustics:Transactions of the ASME,2019,141(3):126-137. [16] 曲翔宇. 考虑列车系统状态的地铁列车振动源强参数研究[D]. 北京: 北京交通大学, 2020. [17] YUE S. Vibration and noise control technology for high-speed railway[J]. International Journal of Vehicle Structures and Systems,2020,11(4):389-392. [18] XING M T. A numerical analysis of ground vibration induced by typical rail corrugation of underground subway[J]. Shock and Vibration,2019:8406813. [19] 刘章军, 何承高, 张传勇.车辆-轨道垂向耦合系统求解过程的改进算法[J]. 应用数学和力学,2019,40(6):641-649.LIU Z J, HE C G, ZHANG C Y. An improved algorithm for solving dynamic responses of vehicle-track vertically coupled systems[J]. Applied Mathematics and Mechanics,2019,40(6):641-649. ⊗