留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全氟辛酸光催化材料应用及降解机理研究进展

魏健 徐晓月 郭壮 段丽杰 宋永会

魏健,徐晓月,郭壮,等.全氟辛酸光催化材料应用及降解机理研究进展[J].环境工程技术学报,2023,13(3):1127-1138 doi: 10.12153/j.issn.1674-991X.20220573
引用本文: 魏健,徐晓月,郭壮,等.全氟辛酸光催化材料应用及降解机理研究进展[J].环境工程技术学报,2023,13(3):1127-1138 doi: 10.12153/j.issn.1674-991X.20220573
WEI J,XU X Y,GUO Z,et al.Research progress in the application and degradation mechanism of perfluorooctanoic acid photocatalytic materials[J].Journal of Environmental Engineering Technology,2023,13(3):1127-1138 doi: 10.12153/j.issn.1674-991X.20220573
Citation: WEI J,XU X Y,GUO Z,et al.Research progress in the application and degradation mechanism of perfluorooctanoic acid photocatalytic materials[J].Journal of Environmental Engineering Technology,2023,13(3):1127-1138 doi: 10.12153/j.issn.1674-991X.20220573

全氟辛酸光催化材料应用及降解机理研究进展

doi: 10.12153/j.issn.1674-991X.20220573
基金项目: 国家重点研发计划重点专项(2021YFC3201505-04)
详细信息
    作者简介:

    魏健(1983—),男,副研究员,博士,主要从事水污染控制技术研究,weijian0911@163.com

    通讯作者:

    徐晓月(1998—),女,硕士研究生,主要从事水污染控制技术研究,xuxiaoyue0227@163.com

    宋永会(1967—),男,研究员,博士,主要从事水污染控制与流域治理技术研究,songyh@craes.org.cn

  • 中图分类号: X505

Research progress in the application and degradation mechanism of perfluorooctanoic acid photocatalytic materials

  • 摘要:

    全氟辛酸(PFOA)是一种广泛存在于环境介质中的典型全氟化合物,具有高毒性、难降解等特点,严重威胁生态环境安全及人类遗传、免疫、神经和生殖健康,其环境危害和风险防控引起广泛关注。光催化技术具有反应条件温和、处理效率高、应用成本低且无二次污染等优势,在PFOA的降解处理方面具有广阔应用前景。为研发活性强、可见光吸收性能好、稳定性高的新型光催化材料,实现水中PFOA的高效降解,系统梳理了近20年来PFOA光催化降解材料制备的相关研究,对不同光催化降解材料的降解特性及存在问题进行全面分析;结合现有材料对PFOA的光催化降解,总结光催化降解材料的反应机理及活性增强机制,阐明PFOA的光催化降解路径。

     

  • 图  1  PFOA分子结构

    Figure  1.  The molecular structure of PFOA

    图  2  光催化一般机理

    Figure  2.  General mechanism of photocatalysis

    图  3  传统光响应异质结光催化剂下几种不同类型的电子-空穴对分离示意

    Figure  3.  Schematic diagram of separation of several different types of electron-hole pairs under conventional photoresponsive heterojunction photocatalysts

    图  4  PFOA的光催化降解机制

    Figure  4.  Photocatalytic degradation mechanism of PFOA

    表  1  TiO2基材料对PFOA的光催化降解效果

    Table  1.   Photocatalytic degradation effect of PFOA by TiO2-based materials

    降解材料光类型光波长/nm光强度/W反应条件反应时
    间/h
    降解
    率/%
    脱氟
    率/%
    TiO2[20]UV310~40075V=50 mL,C0=1.5 mmol/L,pH=1.0,Ccat=2 g/L2447
    TNTs[37]UV254400V=2 L,C0=50 mg/L,pH=4.0,Ccat=0.125 g/L2459
    掺杂金属Pb-TiO2[13]UV254400C0=50 mg/L,pH=5.0,Ccatalyst=0.5 g/L1299.922.4
    Pt-TiO2[38]UV365125V=120 mL,C0=60 mg/L,pH=3.0,Ccat=0.5 g/L710034.8
    Cu-TiO2[26]UV254400C0=50 mg/L,pH=5.0,Ccat=0.5 g/L129119
    负载碳材料TiO2-MWCNTs(10:1)[30]UV365300V=250 mL,C0=30 mg/L,pH=2.0,Ccat=1.6 g/L894
    rGO-TiO2[32]UV或可见光200~600150C0=0.24 mmol/L,pH=3.8,Ccat=0.1 g/L1293±762
    构建异质结Fe/TNTs@AC[34]UV25430V=40 mL,C0=100 mg/L,pH=7.0,Ccat=1.0 g/L4>9062
    Sb2O3-TiO2[35]UV200~2804C0=10 mg/L,pH=4.4,Ccat=0.25 g/L281.7
    Ce/TiO2/g-C3N4[24]可见光420~800300C0=4 mg/L,pH=2.0,Ccat=1.0 g/L394.438.6
    Ti3C2/TiO2[39]UV2544.5C0=20 μmol/L,Ccat=0.2 g/L16>99.949.0
      注:—表示文献中未提及。V为反应体系容积;C0为PFOA初始浓度;pH为反应最佳条件下pH;Ccat为反应最佳条件下催化剂用量。
    下载: 导出CSV

    表  2  In2O3基材料对PFOA的光催化降解效果

    Table  2.   Photocatalytic degradation effect of PFOA by In2O3-based materials

    降解材料光类型光波长/nm光强度/W反应条件反应时
    间/h
    降解
    率/%
    脱氟
    率/%
    In2O3[18]UV25423V=400 mL,C0=0.1 mmol/L,pH=3.8,Ccat=0.5 g/L483.166.3
    3%Pt/IONRs[49]UV254500V=200 mL,C0=200 mg/L,pH=1.85,Ccat=0.4 g/L198
    g-C3N4-In2O3[45]UV254500V=50 mL,C0=200 mg/L,Ccat=0.4 g/L91(1 h)96(3 h)
    In2O3-GR[46]UV25415V=100 mL,C0=30 mg/L,Ccat=0.4 g/L310060.9
    0.86%CeO2/In2O3[47]UV254500V=200 mL,pH=2.84,C0=100 mg/L,Ccat=0.4 g/L110053.3
    MnOx-In2O3[50]太阳光500V=50 mL,C0=50 mg/L,pH=3.8,Ccat=0.5 g/L399.817.4
      注:同表1
    下载: 导出CSV

    表  3  Bi基材料对PFOA的光催化降解效果

    Table  3.   Photocatalytic degradation effect of PFOA by Bi-based materials

    降解材料光类型光波长/nm光强度/W反应条件反应时
    间/h
    降解
    率/%
    脱氟
    率/%
    BiOX0.95BiOI-0.05Br[53]UV254300V=30 mL,C0=20 mg/L,Ccat=0.4 g/L296
    BiOI/Bi5O7I[64]模拟太阳光400~760800V=40 mL,pH=3.0,C0=15 mg/L,Ccat=0.5 g/L68060
    BiOCl[55]UV25410V=200 mL,pH=4.8,C0=0.02 mmol/L,Ccat=0.5 g/L2459.352.5
    BiOCl0.2I0.8[65]可见光420~700300V=100 mL,C0=50 μmol/L,Ccat=1 g/L665.56
    BiOCl/BiPO4[66]UV2542V=50 mL,C0=20 mg/L,Ccat=0.5 g/L45100
    Zn-AlLDHs-BiOCl[57]UV<35050V=200 mL,pH=2.0,C0=0.5 mg/L,Ccat=0.5 g/L690
    BFO0.5% rGO-Pb-BFO[63]UV2545V=80 mL,pH=2.0,C0=100 mg/L,Ccat=0.05~0.4 g/L869.637.6
    BiOHP9% BiOHP/CS[59]UV25418V=40 mL,pH=7.0,C0=0.2 mg/L,Ccat=1.0 g/L>90(1 h)32.5(4 h)
      注:同表1
    下载: 导出CSV

    表  4  其他类型材料对PFOA的光催化降解效果

    Table  4.   Photocatalytic degradation effect of PFOA by other types of materials

    降解材料光类型光波长/nm光强度/W反应条件反应时间/h降解率/%脱氟率/%
    Ga2O3商业UV25414V=150 mL,C0=500 μg/L,pH=4.8,Ccat=0.5 g/L338
    束状[22]100(45 min)61(3 h)
    InOOH[68]UV25418V=200 mL,C0=20 mg/L,Ccat=0.25 g/L383.4
    ZnOZnO[19]UV25428V=1 L,C0=100 mg/L,pH=3.1,Ccat=0.2 g/L418.2
    ZnO/rGO[78]太阳光V=100 mL,C0=100 mg/L,Ccat=1 g/L10090.91
    Bi5O7I-ZnO[79]可见光420~700500V=50 mL,pH=4.0,C0=1 mg/L,Ccat=0.5 g/L69152.2
    HPWHPW[23]UV254200V=22 mL,C0=1.35 mmol/L,Ccat=6.68 mmol/L2410088
    HPW-BPS[71]UV1858V=500 mL,pH=3.0-4.0,C0=5 mg/L,Ccat=0.2 g/L453
    Fe基Fe-沸石[73]UV300~4004V=100 mL,pH=3.0,C0=48 μmol/L,Ccat=1 g/L6>9938
    FeO/CS[74]太阳光6V=160 mL,pH=7.0,C0=0.2 mg/L,Ccat=1.0 g/L495.257.20
    CeO2@NiAl-LDHs[69]可见光400~600500V=50 mL,pH=9.0,C0=50 mg/L,Ccat=0.5 g/L590.2
      注:同表1
    下载: 导出CSV
  • [1] OCHIAI T, IIZUKA Y, NAKATA K, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous suspensions of a TiO2 photocatalyst with medium-pressure ultraviolet lamp irradiation under atmospheric pressure[J]. Industrial & Engineering Chemistry Research,2011,50(19):10943-10947.
    [2] 吴晓妍, 廖佳.全氟化合物的环境污染及检测方法[J]. 化学世界,2021,62(1):8-13.

    WU X Y, LIAO J. Environment pollution and detection of perfluorochemicals[J]. Chemical World,2021,62(1):8-13.
    [3] 张杰, 赵璞君, 夏星辉. 河流不同分子量溶解性有机质对全氟化合物赋存形态的影响[J/OL]. 环境科学研究. DOI: 10.13198/j.issn.1001-6929.2022.06.07.

    ZHANG J, ZHAO P J, XIA X H. Effects of Dissolved organic matter with different molecular weights on the occurrence form of polyfluoroalkyl substances in river[J]. Research of Environmental Sciences. DOI: 10.13198/j.issn.1001-6929.2022.06.07.
    [4] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review[J]. Water Research,2014,50:318-340.
    [5] BRIEGER A, BIENEFELD N, HASAN R, et al. Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes[J]. Toxicology in Vitro,2011,25(4):960-968. doi: 10.1016/j.tiv.2011.03.005
    [6] FUKUHARA Y, HIRASAWA A, LI X K, et al. Gene expression profile in the regenerating rat liver after partial hepatectomy[J]. Journal of Hepatology,2003,38(6):784-792. doi: 10.1016/S0168-8278(03)00077-1
    [7] HARADA K, XU F, ONO K, et al. Effects of PFOS and PFOA on L-type Ca2+ currents in Guinea-pig ventricular myocytes[J]. Biochemical and Biophysical Research Communications,2005,329(2):487-494. doi: 10.1016/j.bbrc.2005.01.163
    [8] MORIKAWA A, KAMEI N Y, HARADA K, et al. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): an Ai river ecological study in Japan[J]. Ecotoxicology and Environmental Safety,2006,65(1):14-21. doi: 10.1016/j.ecoenv.2005.03.007
    [9] WANG N, LV H Q, ZHOU Y Q, et al. Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate[J]. Environmental Science & Technology,2019,53(14):8302-8313.
    [10] LIOU J S C, SZOSTEK B, DERITO C M, et al. Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere,2010,80(2):176-183. doi: 10.1016/j.chemosphere.2010.03.009
    [11] ZHUO Q F, DENG S B, YANG B, et al. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode[J]. Environmental Science & Technology,2011,45(7):2973-2979.
    [12] 张泽. 全氟辛酸辐照降解过程与机理研究[D]. 合肥: 中国科学技术大学, 2014.
    [13] CHEN M J, LO S L, LEE Y C, et al. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide[J]. Journal of Hazardous Materials,2016,303:111-118. doi: 10.1016/j.jhazmat.2015.10.011
    [14] YANG L, HE L Y, XUE J M, et al. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: review on influences, mechanisms and prospective[J]. Journal of Hazardous Materials,2020,393:122405. doi: 10.1016/j.jhazmat.2020.122405
    [15] YANG B, HAN Y N, DENG Y P, et al. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique[J]. Emerging Contaminants,2016,2(1):49-55. doi: 10.1016/j.emcon.2016.04.001
    [16] CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J]. ACS Applied Materials & Interfaces,2018,10(24):20404-20411.
    [17] RYDER C R, WOOD J D, WELLS S A, et al. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus[J]. ACS Nano,2016,10(4):3900-3917. doi: 10.1021/acsnano.6b01091
    [18] LI X Y, ZHANG P Y, JIN L, et al. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism[J]. Environmental Science & Technology,2012,46(10):5528-5534.
    [19] 吴晓庆, 颜秉斐, 邓齐玉, 等.二硫化钼基异质结催化剂可见光降解有机污染物的研究进展[J]. 环境工程技术学报,2022,12(3):776-786.

    WU X Q, YAN B F, DENG Q Y, et al. Research progress of the visible light degradation of organic pollutants over molybdenum disulfide-based heterojunction catalysts[J]. Journal of Environmental Engineering Technology,2022,12(3):776-786.
    [20] 张旭, 崔娜欣, 周丽, 等.b-N-TiO2/Ag3PO4复合光催化材料的制备及光催化降解有害藻的研究[J]. 环境科学研究,2021,34(11):2645-2654.

    ZHANG X, CUI N X, ZHOU L, et al. Preparation of b-N-TiO2/Ag3PO4 photocatalyst and its photocatalytic degradation of harmful algae[J]. Research of Environmental Sciences,2021,34(11):2645-2654.
    [21] 张慧鸽, 张景繁, 郑宏祥, 等.富氧型铋卤化物Bi5O7I光催化剂研究进展[J]. 能源研究与管理,2021(2):47-53.

    ZHANG H G, ZHANG J F, ZHENG H X, et al. Research progress of oxygen enriched bismuth halide Bi5O7I photocatalyst[J]. Energy Research and Management,2021(2):47-53.
    [22] SHAO T, ZHANG P Y, JIN L, et al. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide[J]. Applied Catalysis B:Environmental,2013,142/143:654-661. doi: 10.1016/j.apcatb.2013.05.074
    [23] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology,2004,38(22):6118-6124.
    [24] 唐力, 夏静芬, 杨国靖, 等.Ce/TiO2/g-C3N4异质结的制备及光催化降解PFOA反应机制[J]. 环境科学学报,2020,40(3):950-958.

    TANG L, XIA J F, YANG G J, et al. Fabrication of a Ce/TiO2/g-C3N4 heterojunction and the photocatalytic decomposition mechanism of perfluorooctanoic acid with visible light[J]. Acta Scientiae Circumstantiae,2020,40(3):950-958.
    [25] 曲长红, 付乌有, 杨海滨.金红石型纳米TiO2颗粒的制备及其光催化性质[J]. 吉林大学学报(理学版),2009,47(4):811-814.

    QU C H, FU W Y, YANG H B. Preparation and photocatalytic properties of rutile titanium dioxide nanoparticles[J]. Journal of Jilin University (Science Edition),2009,47(4):811-814.
    [26] CHEN M J, LO S L, LEE Y C, et al. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide[J]. Journal of Hazardous Materials,2015,288:168-175. doi: 10.1016/j.jhazmat.2015.02.004
    [27] 李明洁. 二氧化钛和铂掺二氧化钛光催化降解全氟辛酸的机制研究[D]. 南宁: 广西大学, 2014.
    [28] ESTRELLAN C R, SALIM C, HINODE H. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide[J]. Journal of Hazardous Materials,2010,179(1/2/3):79-83.
    [29] 刘晴, 喻泽斌, 张睿涵, 等.钯掺TiO2光催化降解全氟辛酸[J]. 环境科学,2015,36(6):2138-2146.

    LIU Q, YU Z B, ZHANG R H, et al. Photocatalytic degradation of perfluorooctanoic acid by Pd-TiO2 photocatalyst[J]. Environmental Science,2015,36(6):2138-2146.
    [30] SONG C, CHEN P, WANG C Y, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365 nm UV irradiation[J]. Chemosphere,2012,86(8):853-859. doi: 10.1016/j.chemosphere.2011.11.034
    [31] PANCHANGAM S C, YELLATUR C S, YANG J S, et al. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA)[J]. Journal of Environmental Chemical Engineering,2018,6(5):6359-6369. doi: 10.1016/j.jece.2018.10.003
    [32] GOMEZ-RUIZ B, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. Journal of Hazardous Materials,2018,344:950-957. doi: 10.1016/j.jhazmat.2017.11.048
    [33] ZHU C, XU J L, SONG S, et al. TiO2 quantum dots loaded sulfonated graphene aerogel for effective adsorption-photocatalysis of PFOA[J]. Science of the Total Environment,2020,698:134275. doi: 10.1016/j.scitotenv.2019.134275
    [34] LI F, WEI Z S, HE K, et al. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst[J]. Water Research,2020,185:116219. doi: 10.1016/j.watres.2020.116219
    [35] YAO X Y, ZUO J Q, WANG Y J, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by mesoporous Sb2O3/TiO2 heterojunctions[J]. Frontiers in Chemistry,2021,9:690520. doi: 10.3389/fchem.2021.690520
    [36] 芦琼, 翟莉慧, 肖寒, 等.TiO2掺杂改性提高光催化剂有机物降解能力技术研究进展[J]. 广东化工,2021,48(1):37-39.

    LU Q, ZHAI L H, XIAO H, et al. Research progress of doping modification of TiO2 to improve photocatalyst organic degradation[J]. Guangdong Chemical Industry,2021,48(1):37-39.
    [37] CHEN Y C, LO S L, KUO J. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid[J]. Water Research,2011,45(14):4131-4140. doi: 10.1016/j.watres.2011.05.020
    [38] LI M J, YU Z B, LIU Q, et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2[J]. Chemical Engineering Journal,2016,286:232-238. doi: 10.1016/j.cej.2015.10.037
    [39] SONG H R, WANG Y W, LING Z, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: application of intercalation strategy in DESs[J]. Science of the Total Environment,2020,746:141009. doi: 10.1016/j.scitotenv.2020.141009
    [40] 梁婷婷. 氧化铟基复合光催化剂的设计、合成及其光催化性能研究[D]. 南昌: 江西科技师范大学, 2021.
    [41] LAI H Y, CHEN T H, CHEN C H. Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing[J]. CrystEngComm,2012,14(17):5589. doi: 10.1039/c2ce25310k
    [42] LI Z M, ZHANG P Y, SHAO T, et al. In2O3 nanoporous nanosphere: a highly efficient photocatalyst for decomposition of perfluorooctanoic acid[J]. Applied Catalysis B:Environmental,2012,125:350-357. doi: 10.1016/j.apcatb.2012.06.017
    [43] LI Z M, ZHANG P Y, SHAO T, et al. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA)[J]. Journal of Hazardous Materials,2013,260:40-46. doi: 10.1016/j.jhazmat.2013.04.042
    [44] LI Z M, ZHANG P Y, LI J G, et al. Synthesis of In2O3 porous nanoplates for photocatalytic decomposition of perfluorooctanoic acid (PFOA)[J]. Catalysis Communications,2014,43:42-46. doi: 10.1016/j.catcom.2013.09.004
    [45] XU C M, QIU P X, CHEN H, et al. Fabrication of two-dimensional indium oxide nanosheets with graphitic carbon nitride nanosheets as sacrificial templates[J]. Materials Letters,2019,242:24-27. doi: 10.1016/j.matlet.2019.01.101
    [46] LI Z M, ZHANG P Y, LI J G, et al. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition[J]. Journal of Photochemistry and Photobiology A:Chemistry,2013,271:111-116. doi: 10.1016/j.jphotochem.2013.08.012
    [47] JIANG F, ZHAO H T, CHEN H, et al. Enhancement of photocatalytic decomposition of perfluorooctanoic acid on CeO2/In2O3[J]. RSC Advances,2016,6(76):72015-72021. doi: 10.1039/C6RA09856H
    [48] WANG W J, CHEN Y, LI G Y, et al. Photocatalytic reductive defluorination of perfluorooctanoic acid in water under visible light irradiation: the role of electron donor[J]. Environmental Science:Water Research & Technology,2020,6(6):1638-1648.
    [49] XU C M, QIU P X, CHEN H, et al. Platinum modified indium oxide nanorods with enhanced photocatalytic activity on degradation of perfluorooctanoic acid (PFOA)[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,80:761-768. doi: 10.1016/j.jtice.2017.09.018
    [50] WU Y Y, LI Y Q, FANG C, et al. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst[J]. ChemCatChem,2019,11(9):2297-2303. doi: 10.1002/cctc.201900273
    [51] 张慧, 刘海津, 陈敏, 等.BiOAc/BiOX(X=Cl, Br)复合材料的制备及其对混合染料的去除[J]. 环境科学研究,2021,34(7):1687-1699.

    ZHANG H, LIU H J, CHEN M, et al. Synthesis of BiOAc/BiOX (X=Cl, Br) composites for removal of mixed dyes[J]. Research of Environmental Sciences,2021,34(7):1687-1699.
    [52] LI Y Y, WANG J S, YAO H C, et al. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical,2011,334(1/2):116-122.
    [53] LI T F, WANG C S, WANG T C, et al. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet[J]. Applied Catalysis B:Environmental,2020,268:118442. doi: 10.1016/j.apcatb.2019.118442
    [54] ZHANG K L, LIU C M, HUANG F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Applied Catalysis B:Environmental,2006,68(3/4):125-129.
    [55] SONG Z, DONG X L, WANG N, et al. Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism[J]. Chemical Engineering Journal,2017,317:925-934. doi: 10.1016/j.cej.2017.02.126
    [56] SUN Y Y, LI G Y, WANG W J, et al. Photocatalytic defluorination of perfluorooctanoic acid by surface defective BiOCl: fast microwave solvothermal synthesis and photocatalytic mechanisms[J]. Journal of Environmental Sciences,2019,84:69-79. doi: 10.1016/j.jes.2019.04.012
    [57] YANG Y Q, ZHENG Z H, YANG M H, et al. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology[J]. Journal of Hazardous Materials,2020,399:123070. doi: 10.1016/j.jhazmat.2020.123070
    [58] SAHU S P, QANBARZADEH M, ATEIA M, et al. Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst[J]. Environmental Science & Technology Letters,2018,5(8):533-538.
    [59] XU T Y, ZHU Y M, DUAN J, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: effectiveness, material synergy and roles of carbon[J]. Chemical Engineering Journal,2020,395:124991. doi: 10.1016/j.cej.2020.124991
    [60] LI S, LIN Y H, ZHANG B P, et al. Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors[J]. The Journal of Physical Chemistry C,2010,114(7):2903-2908. doi: 10.1021/jp910401u
    [61] LI Z X, SHEN Y, YANG C, et al. Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids[J]. J Mater Chem A,2013,1(3):823-829. doi: 10.1039/C2TA00141A
    [62] LI S, ZHANG G S, ZHANG W, et al. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst[J]. Chemical Engineering Journal,2017,326:756-764. doi: 10.1016/j.cej.2017.06.037
    [63] SHANG E X, LI Y, NIU J F, et al. Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst: kinetics and mechanism[J]. Chemosphere,2018,211:34-43. doi: 10.1016/j.chemosphere.2018.07.130
    [64] WANG J Z, CAO C S, WANG Y Y, et al. In situ preparation of p-n BiOI@Bi5O7I heterojunction for enhanced PFOA photocatalytic degradation under simulated solar light irradiation[J]. Chemical Engineering Journal,2020,391:123530. doi: 10.1016/j.cej.2019.123530
    [65] 孙媛媛. 铋系催化剂对全氟辛酸的降解机制研究[D]. 广州: 广东工业大学, 2019.
    [66] BACHA A U R, NABI I, FU Z Y, et al. A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation[J]. Chinese Chemical Letters,2019,30(12):2225-2230. doi: 10.1016/j.cclet.2019.07.058
    [67] KIM N H, KIM H W. Gallium oxide nanomaterials produced on SiO2 substrates via thermal evaporation[J]. Applied Surface Science,2005,242(1/2):29-34.
    [68] XU J J, WU M M, YANG J W, et al. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH[J]. Applied Surface Science,2017,416:587-592. doi: 10.1016/j.apsusc.2017.04.040
    [69] TANG H D, ZHANG W J, MENG Y, et al. A direct Z-scheme heterojunction with boosted transportation of photogenerated charge carriers for highly efficient photodegradation of PFOA: reaction kinetics and mechanism[J]. Applied Catalysis B:Environmental,2021,285:119851. doi: 10.1016/j.apcatb.2020.119851
    [70] FRATTINI L, ISAACS M A, PARLETT C M A, et al. Support enhanced α-pinene isomerization over HPW/SBA-15[J]. Applied Catalysis B:Environmental,2017,200:10-18. doi: 10.1016/j.apcatb.2016.06.064
    [71] YOU X, YU L L, XIAO F F, et al. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation[J]. Chemical Engineering Journal,2018,335:812-821. doi: 10.1016/j.cej.2017.10.123
    [72] HORI H, YAMAMOTO A, KOIKE K, et al. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(Ⅱ)/(Ⅲ) redox reactions[J]. Chemosphere,2007,68(3):572-578. doi: 10.1016/j.chemosphere.2006.12.038
    [73] QIAN L, GEORGI A, GONZALEZ-OLMOS R, et al. Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation[J]. Applied Catalysis B:Environmental,2020,278:119283. doi: 10.1016/j.apcatb.2020.119283
    [74] XU T Y, JI H D, GU Y, et al. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr) oxides/carbon sphere composite[J]. Chemical Engineering Journal,2020,388:124230. doi: 10.1016/j.cej.2020.124230
    [75] YAN T T, CHEN H, JIANG F, et al. Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous carbon nitride[J]. Journal of Chemical & Engineering Data,2014,59(2):508-515.
    [76] QU Y, ZHANG C J, LI F, et al. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon[J]. Journal of Hazardous Materials,2009,169(1/2/3):146-152.
    [77] DUAN L J, WANG B, HECK K, et al. Efficient photocatalytic PFOA degradation over boron nitride[J]. Environmental Science & Technology Letters,2020,7(8):613-619.
    [78] ONG C B, MOHAMMAD A W, NG L Y, et al. Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: degradation of perfluorooctanoic acid and dye[J]. Process Safety and Environmental Protection,2017,112:298-307. doi: 10.1016/j.psep.2017.04.031
    [79] YANG Y Q, JI W Q, LI X Y, et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres[J]. Chemical Engineering Journal,2021,420:129934. doi: 10.1016/j.cej.2021.129934
    [80] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [81] 王丹丹, 王梦琳, 蒋宗瑜, 等.可见光响应g-C3N4/Ag3PO4 Ⅱ型异质结的调控制备及其光催化活性研究[J]. 吉林师范大学学报(自然科学版),2021,42(2):106-114.

    WANG D D, WANG M L, JIANG Z Y, et al. Preparation of visible-light-driven g-C3N4/Ag3PO4 type Ⅱ heterojunction and research of their photocatalytic properties[J]. Journal of Jilin Normal University (Natural Science Edition),2021,42(2):106-114.
    [82] BARD A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry,1979,10(1):59-75. doi: 10.1016/0047-2670(79)80037-4
    [83] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6(7):1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [84] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials,2006,5(10):782-786. doi: 10.1038/nmat1734
    [85] YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics:PCCP,2013,15(39):16883-16890. doi: 10.1039/c3cp53131g
    [86] LI L, SALVADOR P A, ROHRER G S. Photocatalysts with internal electric fields[J]. Nanoscale,2014,6(1):24-42. doi: 10.1039/C3NR03998F
    [87] YU J G, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J]. Journal of the American Chemical Society,2014,136(25):8839-8842. doi: 10.1021/ja5044787
    [88] POLARZ S, STRUNK J, ISCHENKO V, et al. On the role of oxygen defects in the catalytic performance of zinc oxide[J]. Angewandte Chemie International Edition,2006,45(18):2965-2969. doi: 10.1002/anie.200503068
    [89] 刘丹丹, 丁文杰, 刘佳佳, 等.纳米氧化物光催化剂的缺陷调控研究进展[J]. 稀有金属,2021,45(5):583-610.

    LIU D D, DING W J, LIU J J, et al. Recent advances in defect chemistry of oxides for photocatalysis applications[J]. Chinese Journal of Rare Metals,2021,45(5):583-610.
    [90] PAN X Y, YANG M Q, FU X Z, et al. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications[J]. Nanoscale,2013,5(9):3601-3614. doi: 10.1039/c3nr00476g
    [91] 刘景景, 张泽兰, 李诗, 等.钒酸铋可见光催化材料的改性研究进展[J]. 材料导报,2021,35(17):17163-17177.

    LIU J J, ZHANG Z L, LI S, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports,2021,35(17):17163-17177.
    [92] LEARY R, WESTWOOD A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon,2011,49(3):741-772. doi: 10.1016/j.carbon.2010.10.010
    [93] LIANG C D, LI Z J, DAI S. Mesoporous carbon materials: synthesis and modification[J]. Angewandte Chemie International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [94] 吴文惠. 改性二氧化钛基纳米材料的构筑、结构调控和光催化性能研究[D]. 武汉: 武汉大学, 2017.
    [95] MAITANI M M, TANAKA K, MOCHIZUKI D, et al. Enhancement of photoexcited charge transfer by {001}facet-dominating TiO2 nanoparticles[J]. Journal of Physical Chemistry Letters,2011,2(20):2655-2659. doi: 10.1021/jz2011622
    [96] ZHOU C G, ZHOU J K, LU L, et al. Surface electric field driven directional charge separation on Ta3N5 cuboids enhancing photocatalytic solar energy conversion[J]. Applied Catalysis B: Environmental,2018,237:742-752. doi: 10.1016/j.apcatb.2018.06.036
    [97] PANCHANGAM S C, LIN A Y C, SHAIK K L, et al. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium[J]. Chemosphere,2009,77(2):242-248. doi: 10.1016/j.chemosphere.2009.07.003
    [98] SANSOTERA M, PERSICO F, RIZZI V, et al. The effect of oxygen in the photocatalytic oxidation pathways of perfluorooctanoic acid[J]. Journal of Fluorine Chemistry,2015,179:159-168. doi: 10.1016/j.jfluchem.2015.06.019
    [99] HORI H, YAMAMOTO A, KOIKE K, et al. Photocatalytic decomposition of a perfluoroether carboxylic acid by tungstic heteropolyacids in water[J]. Applied Catalysis B:Environmental,2008,82(1/2):58-66. ⊗
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  278
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06

目录

    /

    返回文章
    返回