留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展

段亮 李世龙 邢飞

段亮,李世龙,邢飞.正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展[J].环境工程技术学报,2023,13(3):1150-1160 doi: 10.12153/j.issn.1674-991X.20220593
引用本文: 段亮,李世龙,邢飞.正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展[J].环境工程技术学报,2023,13(3):1150-1160 doi: 10.12153/j.issn.1674-991X.20220593
DUAN L,LI S L,XING F.Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell[J].Journal of Environmental Engineering Technology,2023,13(3):1150-1160 doi: 10.12153/j.issn.1674-991X.20220593
Citation: DUAN L,LI S L,XING F.Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell[J].Journal of Environmental Engineering Technology,2023,13(3):1150-1160 doi: 10.12153/j.issn.1674-991X.20220593

正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展

doi: 10.12153/j.issn.1674-991X.20220593
基金项目: 国家水体污染控制与治理科技重大专项(2018ZX07601-003)
详细信息
    作者简介:

    段亮(1983—),男,研究员,博士,长期从事水环境处理技术研究,duanliang@craes.org.cn

  • 中图分类号: X703

Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell

  • 摘要:

    正渗透微生物燃料电池(OsMFC)采用正渗透(FO)膜代替传统微生物燃料电池(MFC)中的质子交换膜,可以在回收生物电的同时借助FO膜对原料液即阳极污水进行处理并提取高质量水,该技术受到广泛关注。与传统MFC相比,OsMFC在产电性能和出水水质方面均有提升。但是,FO膜的引入使得OsMFC系统反向溶质扩散和膜污染等问题十分突出,进而导致FO膜的水通量降低,OsMFC的产电和产水性能下降,限制了OsMFC的发展和应用。随着近年来材料和生物等领域的不断发展,上述问题可以通过合理的技术手段解决。从优化OsMFC性能出发,重点从反向溶质通量(RSF)控制和膜污染控制2个方面对近几年的研究进行分析和总结,主要包括通过膜材料的选择、汲取液的选择和OsMFC系统内产电对RSF进行抑制,以及通过膜污染形成机制、膜污染的技术调控、膜污染清洗、膜材料的改性和阳极微生物的筛选与培养对膜污染进行控制,并对未来OsMFC的RSF和膜污染的控制技术进行了展望。

     

  • 图  1  OsMFC基本原理

    Figure  1.  Basic principle of OsMFC

    图  2  RSF基本原理(以活性层朝向汲取液为例)

    Figure  2.  Basic principle of RSF (taking the active layer facing the draw solution as an example)

    图  3  FO膜污染示意

    Figure  3.  Schematic of FO membrane fouling

    图  4  生物污染形成过程

    Figure  4.  Biological contamination formation process

    表  1  已有研究中OsMFC的参数与性能总结

    Table  1.   Summary of parameters and performance of OsMFC in existing research results

    研究开展年份汲取液种类外部电阻/Ω电流密度/
    (A/m3
    最大输出功率/
    (W/m3
    数据
    来源
    2011 NaCl(58 g/L) 10 30.0 4.74 文献[1]
    海水(35 g/L) 10 17.3 2.39 文献[1]
    2013 NaCl(35 g/L) 100 0.1 43.00 文献[23]
    NaCl(2 mol/L) 10 37.0 4.50 文献[24]
    2014 NaCl(2 mol/L) 50 139.5 27.38 文献[25]
    2015 NaCl(1 mol/L) 100 11.70 文献[26]
    2018 K2SO4(0.5 mol/L) 10 24.7 文献[27]
    2019 EDTA-Na2(0.2 mol/L) 10 22.5 文献[28]
    NaCl(0.185 mol/L) 10 23.6 文献[28]
    2020 NaCl(1 mol/L) 500 3.70 文献[29]
    PBS(1 mol/L) 10 73.3 文献[30]
    NaCl(1 mol/L) 10 49.7 文献[30]
    2021 NaCl(0.25 mol/L) 5 0.10 文献[31]
    NaCl(35 g/L) 100 3.40 文献[32]
    NH4HCO3(1 mol/L) 5 402.0 文献[33]
    2022 NaCl(35 g/L)+
    NaHCO3(1 g/L)
    250 11.10 文献[34]
    下载: 导出CSV

    表  2  PAA-Na和EDTA-Na2与常规汲取液的性能对比

    Table  2.   Comparison of performance of PAA-Na and EDTA-Na2 with conventional draw solutions

    汲取液种类水通量/
    〔L/(m2·h)〕
    电流密度/
    (A/m3
    RSF/
    〔g/(m2·h)〕
    回收率/%数据
    来源
    PAA-Na
    (质量比32%)
    12.7±0.2159.0±6.00.05≥99文献[52]
    PBS
    (质量比8%)
    3.4~3.7167.0±6.09.12±0.10文献[52]
    EDTA-Na2
    (0.2 mol/L)
    1.622.50.38>90文献[28]
    NaCl
    (0.185 mol/L)
    1.223.61.00文献[28]
    下载: 导出CSV

    表  3  HRT对OsMFC的影响

    Table  3.   Effect of HRT on OsMFC

    HRT/h水通量/〔L/(m2·h)〕最大输出功率密度/(W/m3数据来源
    241.110.10文献[24]
    121.330.36
    61.490.82
    61.52±0.112.68±0.87文献[32]
    4.51.57±0.11
    31.64±0.094.77±0.57
    下载: 导出CSV

    表  4  不同清洗方法的清洗效果

    Table  4.   Cleaning effect of different cleaning methods

    清洗方法水通量/〔L/(m2·h)〕水通量恢复率/%内阻/Ω最大输出功率密度/(W/m3)数据来源
    原始膜4.17±0.1686.4±34.33.42±0.18文献[32]
    去离子水+超声波2.04±0.0648.9141.5±14.42.87±0.09
    0.1% NaOH+0.2%NaCl3.06±0.1173.5112.2±19.83.12±0.54
    0.2%NaClO3.82±0.0791.689.2±30.53.35±0.67
    原始膜4.25494.3±25.41.28文献[70]
    NaClO3.0563.1374.4±8.00.22
    EDTA3.2157.5394.8±9.10.11
    物理清洗2.6944.7423.4±12.60.76
    下载: 导出CSV

    表  5  加入铁还原菌前后系统性能及FO膜性能[70]

    Table  5.   System performance and FO membrane performance before and after adding iron reduction bacteria

    状态最高输出电压/mV最大输出功率密度/(W/m3阳极电导率/(mS/cm)阴极电导率/(mS/cm)水通量/〔L/(m2·h)〕Na+反向渗透量〔g/(m2·h)〕
    未加入3001.288.50~10.5030.38~45.291.54~3.1412.23~18.19
    加入84012.23±1.0519.89~45.311.83~3.206.40~10.79
    下载: 导出CSV
  • [1] ZHANG F, BRASTAD K S, HE Z. Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation[J]. Environmental Science & Technology,2011,45(15):6690-6696.
    [2] 张春秋, 易夏文, 王靖翔, 等.连续流正渗透微生物燃料电池的运行性能研究[J]. 膜科学与技术,2017,37(6):83-89. doi: 10.16159/j.cnki.issn1007-8924.2017.06.012

    ZHANG C Q, YI X W, WANG J X, et al. Performance of a novel osmotic microbial fuel cell in a continuous operation[J]. Membrane Science and Technology,2017,37(6):83-89. doi: 10.16159/j.cnki.issn1007-8924.2017.06.012
    [3] 王志伟, 唐霁旭, 马金星, 等.正渗透微生物燃料电池处理污泥[J]. 同济大学学报(自然科学版),2014,42(9):1359-1364.

    WANG Z W, TANG J X, MA J X, et al. Waste activated sludge treatment in an osmotic microbial fuel cell (OsMFC)[J]. Journal of Tongji University (Natural Science),2014,42(9):1359-1364.
    [4] OH Y, LEE S, ELIMELECH M, et al. Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis[J]. Journal of Membrane Science,2014,465:159-166. doi: 10.1016/j.memsci.2014.04.008
    [5] HANCOCK N T, CATH T Y. Solute coupled diffusion in osmotically driven membrane processes[J]. Environmental Science & Technology,2009,43(17):6769-6775.
    [6] LAY W C, CHONG T H, TANG C Y, et al. Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon[J]. BMC Surgery,2010,61(4):927-936.
    [7] ZOU S Q, QIN M H, HE Z. Tackle reverse solute flux in forward osmosis towards sustainable water recovery: reduction and perspectives[J]. Water Research,2019,149:362-374. doi: 10.1016/j.watres.2018.11.015
    [8] SHE Q H, WONG Y K W, ZHAO S F, et al. Organic fouling in pressure retarded osmosis: experiments, mechanisms and implications[J]. Journal of Membrane Science,2013,428:181-189. doi: 10.1016/j.memsci.2012.10.045
    [9] HOLLOWAY R W, REGNERY J, NGHIEM L D, et al. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor[J]. Environmental Science & Technology,2014,48(18):10859-10868.
    [10] KLAYSOM C, CATH T Y, DEPUYDT T, et al. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply[J]. Chemical Society Reviews,2013,42(16):6959-6989. doi: 10.1039/c3cs60051c
    [11] QIU G L, TING Y P. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics[J]. Bioresource Technology,2013,150:287-297. doi: 10.1016/j.biortech.2013.09.090
    [12] YANG E, CHAE K J, KIM I S. Comparison of different semipermeable membranes for power generation and water flux in osmotic microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology,2016,91(8):2305-2312.
    [13] NAN J, LI H, MANHONG H, et al. Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes[J]. Sustainable Environment Research,2021,31(1):1-10. doi: 10.1186/s42834-020-00075-3
    [14] WEI J, QIU C Q, TANG C Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J]. Journal of Membrane Science,2011,372(1/2):292-302.
    [15] GU Y S, WANG Y N, WEI J, et al. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules[J]. Water Research,2013,47(5):1867-1874. doi: 10.1016/j.watres.2013.01.008
    [16] YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology,2010,44(10):3812-3818.
    [17] OYMACI P, NIJMEIJER K, BORNEMAN Z. Development of polydopamine forward osmosis membranes with low reverse salt flux[J]. Membranes,2020,10(5):E94. doi: 10.3390/membranes10050094
    [18] LI D, WANG H T. Smart draw agents for emerging forward osmosis application[J]. Journal of Materials Chemistry A,2013,1(45):14049. doi: 10.1039/c3ta12559a
    [19] GE Z, HE Z. Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells[J]. Bioresource Technology,2012,109:70-76. doi: 10.1016/j.biortech.2012.01.044
    [20] GE Q C, LING M M, CHUNG T S. Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future[J]. Journal of Membrane Science,2013,442:225-237. doi: 10.1016/j.memsci.2013.03.046
    [21] CAI Y F, HU X M. A critical review on draw solutes development for forward osmosis[J]. Desalination,2016,391:16-29. doi: 10.1016/j.desal.2016.03.021
    [22] ACHILLI A, CATH T Y, CHILDRESS A E. Selection of inorganic-based draw solutions for forward osmosis applications[J]. Journal of Membrane Science,2010,364(1/2):233-241.
    [23] WERNER C M, LOGAN B E, SAIKALY P E, et al. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell[J]. Journal of Membrane Science,2013,428:116-122. doi: 10.1016/j.memsci.2012.10.031
    [24] GE Z, PING Q Y, XIAO L, et al. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater[J]. Desalination,2013,312:52-59. doi: 10.1016/j.desal.2012.08.036
    [25] PARDESHI P, MUNGRAY A. High flux layer by layer polyelectrolyte FO membrane: toward enhanced performance for osmotic microbial fuel cell[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2014,63(12):595-601. doi: 10.1080/00914037.2013.854232
    [26] ZHU X Z, ZHANG F, LI W W, et al. Insights into enhanced current generation of an osmotic microbial fuel cell under membrane fouling condition[J]. Journal of Membrane Science,2016,504:40-46. doi: 10.1016/j.memsci.2015.12.050
    [27] WU S M, QIAN G, HE Z. Examination of inorganic-based draw solutes and mitigation of their reverse solute flux in osmotic microbial fuel cells[J]. Journal of Chemical Technology and Biotechnology,2019,94(7):2107-2114. doi: 10.1002/jctb.5794
    [28] WANG Z X, WU S M, HE Z. Production of electricity and water in an osmotic microbial fuel cell by using EDTA-Na2 as a recoverable draw solute[J]. Science of the Total Environment,2019,677:382-389. doi: 10.1016/j.scitotenv.2019.04.319
    [29] LU Y, JIA J, MIAO H, et al. Performance improvement and biofouling mitigation in osmotic microbial fuel cells via in situ formation of silver nanoparticles on forward osmosis membrane[J]. Membranes,2020,10(6):E122. doi: 10.3390/membranes10060122
    [30] SONG H L, CAI Y, WU Y, et al. Enhancing the performance of a bioelectrochemically assisted osmotic membrane bioreactor based on reverse diffusion of organic and buffering draw solutes[J]. Desalination,2020,496:114730. doi: 10.1016/j.desal.2020.114730
    [31] GANGADHARAN P, VADEKEETIL A, SIBI R, et al. Concentrating nutrients and recovering water and energy from source separated urine using osmotic microbial fuel cell[J]. Chemosphere,2021,285:131548. doi: 10.1016/j.chemosphere.2021.131548
    [32] XUE W C, HE Y F, YUMUNTHAMA S, et al. Membrane cleaning and performance insight of osmotic microbial fuel cell[J]. Chemosphere,2021,285:131549. doi: 10.1016/j.chemosphere.2021.131549
    [33] YANG Y L, LU Y X, WU Y, et al. Effects of operating parameters on salinity accumulation in a bioelectrochemically-assisted osmotic membrane bioreactor[J]. Bioresource Technology,2021,319:124208. doi: 10.1016/j.biortech.2020.124208
    [34] XUE W C, CHANAMARN W, TABUCANON A S, et al. Treatment of agro-food industrial waste streams using osmotic microbial fuel cells: performance and potential improvement measures[J]. Environmental Technology & Innovation,2022,27:102773.
    [35] PHILLIP W A, YONG J S, ELIMELECH M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environmental Science & Technology,2010,44(13):5170-5176.
    [36] ZHANG F, HE Z. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology,2012,87(1):153-159.
    [37] WANG N Y, FENG Y J, LI Y F, et al. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment[J]. Water Research,2022,219:118570. doi: 10.1016/j.watres.2022.118570
    [38] SEVDA S, ABU-REESH I M. Improved petroleum refinery wastewater treatment and seawater desalination performance by combining osmotic microbial fuel cell and up-flow microbial desalination cell[J]. Environmental Technology,2019,40(7):888-895. doi: 10.1080/09593330.2017.1410580
    [39] CHEN J L, LV Y, WANG Y, et al. Endogenous inorganic carbon buffers accumulation and self-buffering capacity enhancement of air-cathode microbial fuel cells through anolyte recycling[J]. Science of the Total Environment,2019,676:11-17. doi: 10.1016/j.scitotenv.2019.04.282
    [40] WANG C T, HUANG Y S, SANGEETHA T, et al. Assessment of recirculation batch mode operation in bufferless bio-cathode microbial fuel cells (MFCs)[J]. Applied Energy,2018,209:120-126. doi: 10.1016/j.apenergy.2017.10.074
    [41] WU S M, ZOU S Q, YANG Y L, et al. Enhancing the performance of an osmotic microbial fuel cell through self-buffering with reverse-fluxed sodium bicarbonate[J]. Chemical Engineering Journal,2018,349:241-248. doi: 10.1016/j.cej.2018.05.086
    [42] 印霞棐, 刘维平, 姜璐.利用微生物燃料电池回收含铜废水中的铜[J]. 环境工程,2014,32(9):152-157. doi: 10.13205/j.hjgc.201409034

    YIN X F, LIU W P, JIANG L. Recovery of copper from copper-contained wastewater by using a microbial fuel cell[J]. Environmental Engineering,2014,32(9):152-157. doi: 10.13205/j.hjgc.201409034
    [43] 吴英. 微生物燃料电池处理啤酒废水的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
    [44] GUO Y L, CHEN Z, ZHANG S H. Methane-fueled microbial fuel cells with the formate-acclimating electroactive culture[J]. Science of the Total Environment,2021,754:142186. doi: 10.1016/j.scitotenv.2020.142186
    [45] SONG H L, ZHANG S, LONG X Z, et al. Optimization of bioelectricity generation in constructed wetland-coupled microbial fuel cell systems[J]. Water,2017,9(3):185. doi: 10.3390/w9030185
    [46] NAGA SAMRAT M V V, RAO K K, RUGGERI B, et al. Denitrification of water in a microbial fuel cell (MFC) using seawater bacteria[J]. Journal of Cleaner Production,2018,178:449-456. doi: 10.1016/j.jclepro.2017.12.221
    [47] GE Q C, SU J C, AMY G L, et al. Exploration of polyelectrolytes as draw solutes in forward osmosis processes[J]. Water Research,2012,46(4):1318-1326. doi: 10.1016/j.watres.2011.12.043
    [48] DAI S, RAVI P, TAM K C. pH-responsive polymers: synthesis, properties and applications[J]. Soft Matter,2008,4(3):435-449. doi: 10.1039/b714741d
    [49] KANG Y, ZHENG S X, FINNERTY C, et al. Regenerable polyelectrolyte membrane for ultimate fouling control in forward osmosis[J]. Environmental Science & Technology,2017,51(6):3242-3249.
    [50] YANG Y L, CHEN M T, ZOU S Q, et al. Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment[J]. Desalination,2017,422:134-141. doi: 10.1016/j.desal.2017.08.024
    [51] YANG Y L, SONG H L, HE Z. Mitigation of solute buildup by using a biodegradable and reusable polyelectrolyte as a draw solute in an osmotic membrane bioreactor[J]. Environmental Science:Water Research & Technology,2019,5(1):19-27.
    [52] YANG Y L, QIN M H, YANG X L, et al. Sustainable operation of osmotic microbial fuel cells through effective reproduction of polyelectrolyte draw solutes facilitated by cathodic pH increase[J]. Journal of Cleaner Production,2017,168:1143-1149. doi: 10.1016/j.jclepro.2017.09.107
    [53] ZHANG M M, SHE Q H, YAN X L, et al. Effect of reverse solute diffusion on scaling in forward osmosis: a new control strategy by tailoring draw solution chemistry[J]. Desalination,2017,401:230-237. doi: 10.1016/j.desal.2016.08.014
    [54] KERUSHA L, W P J, C R L, et al. EDTA: a synthetic draw solute for forward osmosis[J]. Water Science and Technology,2014,70(10):1677-1682. doi: 10.2166/wst.2014.424
    [55] HAU N T, CHEN S S, NGUYEN N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge[J]. Journal of Membrane Science,2014,455:305-311. doi: 10.1016/j.memsci.2013.12.068
    [56] 李玲, 王新华, 李秀芬, 等.EDTA吸附材料控制厌氧正渗透膜生物反应器中正渗透膜的污染[J]. 膜科学与技术,2019,39(4):82-88.

    LI L, WANG X H, LI X F, et al. Application of EDTA-based adsorption material for controlling forward osmosis membrane fouling in anaerobic osmotic membrane bioreactors[J]. Membrane Science and Technology,2019,39(4):82-88.
    [57] 王皓, 李雪梅, 何涛, 等.乙二胺、乙二胺四乙酸有机盐作为FO过程驱动溶质的研究[J]. 膜科学与技术,2013,33(6):87-91. doi: 10.16159/j.cnki.issn1007-8924.2013.06.013

    WANG H, LI X M, HE T, et al. The use of EDA and EDTA as organic draw solutes in forward osmosis[J]. Membrane Science and Technology,2013,33(6):87-91. doi: 10.16159/j.cnki.issn1007-8924.2013.06.013
    [58] AELTERMAN P, VERSICHELE M, GENETTELLO E, et al. Microbial fuel cells operated with iron-chelated air cathodes[J]. Electrochimica Acta,2009,54(24):5754-5760. doi: 10.1016/j.electacta.2009.05.023
    [59] TIEDJE J M. Influence of environmental parameters on EDTA biodegradation in soils and sediments[J]. Journal of Environmental Quality,1977,6(1):21-26.
    [60] KIM G, CHOI W. Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light[J]. Applied Catalysis B:Environmental,2010,100(1/2):77-83.
    [61] ZOU S Q, HE Z. Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system[J]. Water Research,2017,115:111-119. doi: 10.1016/j.watres.2017.02.060
    [62] 吴思邈. 汲取液对正渗透微生物燃料电池抑制或利用反向溶质通量的控制作用[D]. 上海: 上海大学, 2019.
    [63] QIN M H, ABU-REESH I M, HE Z. Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells[J]. Water Research,2016,105:583-590. doi: 10.1016/j.watres.2016.09.028
    [64] 安路阳, 宋迪慧, 杨爽, 等.电辅助膜生物反应器体系中Co纳米催化膜处理焦化废水研究[J]. 环境科学研究,2021,34(5):1129-1138. doi: 10.13198/j.issn.1001-6929.2020.12.19

    AN L Y, SONG D H, YANG S, et al. Coking wastewater treatment by Co nanocatalytic membrane in electrical membrane bioreactor system[J]. Research of Environmental Sciences,2021,34(5):1129-1138. doi: 10.13198/j.issn.1001-6929.2020.12.19
    [65] LUTCHMIAH K, VERLIEFDE A R D, ROEST K, et al. Forward osmosis for application in wastewater treatment: a review[J]. Water Research,2014,58:179-197. doi: 10.1016/j.watres.2014.03.045
    [66] LEE S, BOO C, ELIMELECH M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science,2010,365(1/2):34-39.
    [67] WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science,2016,504:113-132. doi: 10.1016/j.memsci.2016.01.010
    [68] LU Y Q, BIAN X, WANG H L, et al. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: performance and membrane fouling[J]. Frontiers of Environmental Science & Engineering,2018,12(4):1-10.
    [69] LAY W C L, ZHANG Q Y, ZHANG J S, et al. Study of integration of forward osmosis and biological process: membrane performance under elevated salt environment[J]. Desalination,2011,283:123-130. doi: 10.1016/j.desal.2011.01.036
    [70] 龙再柱. 阳极铁还原细菌强化OsMFC对养猪废水的处理及膜抗污染能力研究[D]. 西安: 长安大学, 2021.
    [71] MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research,2009,43(6):1489-1512. doi: 10.1016/j.watres.2008.12.044
    [72] ZHAO Y, SONG L F, ONG S L. Fouling behavior and foulant characteristics of reverse osmosis membranes for treated secondary effluent reclamation[J]. Journal of Membrane Science,2010,349(1/2):65-74.
    [73] CORNELISSEN E R, HARMSEN D, BEERENDONK E F, et al. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater[J]. Water Science and Technology,2011,63(8):1557-1565. doi: 10.2166/wst.2011.206
    [74] ACHILLI A, CATH T Y, MARCHAND E A, et al. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes[J]. Desalination,2009,239(1/2/3):10-21.
    [75] 邓雁平, 叶亚平, 钱维兰, 等.不同物理清洗方式对一体式膜生物反应器过滤特性的影响[J]. 环境科学研究,2005,18(6):61-65. doi: 10.3321/j.issn:1001-6929.2005.06.014

    DENG Y P, YE Y P, QIAN W L, et al. Influence of the different physical membrane washing method on membrane filtration[J]. Research of Environmental Sciences,2005,18(6):61-65. doi: 10.3321/j.issn:1001-6929.2005.06.014
    [76] WEI L L, YUAN Z L, CUI M J, et al. Study on electricity-generation characteristic of two-chambered microbial fuel cell in continuous flow mode[J]. International Journal of Hydrogen Energy,2012,37(1):1067-1073. doi: 10.1016/j.ijhydene.2011.02.120
    [77] LI X H, ZHU N W, WANG Y, et al. Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst[J]. Bioresource Technology,2013,128:454-460. doi: 10.1016/j.biortech.2012.10.053
    [78] AKMAN D, CIRIK K, OZDEMIR S, et al. Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time[J]. Bioresource Technology,2013,149:459-464. doi: 10.1016/j.biortech.2013.09.102
    [79] FAZLI N, MUTAMIM N S A, JAFRI N M A, et al. Microbial fuel cell (MFC) in treating spent caustic wastewater: varies in hydraulic retention time (HRT) and mixed liquor suspended solid (MLSS)[J]. Journal of Environmental Chemical Engineering,2018,6(4):4339-4346. doi: 10.1016/j.jece.2018.05.059
    [80] GRUBER M F, JOHNSON C J, TANG C Y, et al. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems[J]. Journal of Membrane Science,2011,379(1/2):488-495.
    [81] LIU G C, LI L, QIU L P, et al. Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: efficiency and molecular mechanisms[J]. Journal of Membrane Science,2018,545:348-357. doi: 10.1016/j.memsci.2017.08.062
    [82] YADAV S, IBRAR I, BAKLY S, et al. Organic fouling in forward osmosis: a comprehensive review[J]. Water,2020,12(5):1505. doi: 10.3390/w12051505
    [83] GARRETT T R, BHAKOO M, ZHANG Z B. Bacterial adhesion and biofilms on surfaces[J]. Progress in Natural Science,2008,18(9):1049-1056. doi: 10.1016/j.pnsc.2008.04.001
    [84] YANG H L, LIN J C T, HUANG C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination[J]. Water Research,2009,43(15):3777-3786. doi: 10.1016/j.watres.2009.06.002
    [85] MEIER-HAACK J, BOOKER N A, CARROLL T. A permeability-controlled microfiltration membrane for reduced fouling in drinking water treatment[J]. Water Research,2003,37(3):585-588. doi: 10.1016/S0043-1354(02)00360-3
    [86] FERNANDEZ-LOPEZ S, KIM H S, CHOI E C, et al. Antibacterial agents based on the cyclic d, l-α-peptide architecture[J]. Nature,2001,412(6845):452-455. doi: 10.1038/35086601
    [87] RANA D, MATSUURA T. Surface modifications for antifouling membranes[J]. Chemical Reviews,2010,110(4):2448-2471. doi: 10.1021/cr800208y
    [88] XU C, XU Y L, ZHU J L. Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification[J]. ACS Applied Materials & Interfaces,2014,6(18):16117-16123.
    [89] ZODROW K, BRUNET L, MAHENDRA S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal[J]. Water Research,2009,43(3):715-723. doi: 10.1016/j.watres.2008.11.014
    [90] LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research,2008,42(18):4591-4602. doi: 10.1016/j.watres.2008.08.015
    [91] YIN J, YANG Y, HU Z Q, et al. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling[J]. Journal of Membrane Science,2013,441:73-82. doi: 10.1016/j.memsci.2013.03.060
    [92] BEN-SASSON M, ZODROW K R, QI G G, et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties[J]. Environmental Science & Technology,2014,48(1):384-393.
    [93] 陆宇琴. 正渗透微生物燃料电池的膜污染机理及其控制措施研究[D]. 无锡: 江南大学, 2018.
    [94] YANG E, CHAE K J, ALAYANDE A B, et al. Concurrent performance improvement and biofouling mitigation in osmotic microbial fuel cells using a silver nanoparticle-polydopamine coated forward osmosis membrane[J]. Journal of Membrane Science,2016,513:217-225. doi: 10.1016/j.memsci.2016.04.028
    [95] SHRESTHA N, CHILKOOR G, XIA L C, et al. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent re-use in power plants[J]. Water Research,2017,117:37-48. doi: 10.1016/j.watres.2017.03.044
    [96] YANG Y G, XU M Y, GUO J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems[J]. Process Biochemistry,2012,47(12):1707-1714. doi: 10.1016/j.procbio.2012.07.032
    [97] 赵阳, 宋永会, 段亮.微生物燃料电池降低活化内阻和欧姆内阻技术研究进展[J]. 环境工程技术学报,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167

    ZHAO Y, SONG Y H, DUAN L. Technical research progress of reducing activation internal resistance and ohmic internal resistance in microbial fuel cells[J]. Journal of Environmental Engineering Technology,2021,11(2):343-353. doi: 10.12153/j.issn.1674-991X.20200167
    [98] BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555. doi: 10.1128/AEM.69.3.1548-1555.2003
    [99] BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science,2002,295(5554):483-485. doi: 10.1126/science.1066771
    [100] KIEFT T L, FREDRICKSON J K, ONSTOTT T C, et al. Dissimilatory reduction of Fe(Ⅲ) and other electron acceptors by a Thermus isolate[J]. Applied and Environmental Microbiology,1999,65(3):1214-1221. doi: 10.1128/AEM.65.3.1214-1221.1999
    [101] 王帅兵. 微生物燃料电池产电菌株的筛选及群落结构研究[D]. 舟山: 浙江海洋大学, 2017.
    [102] 刘远峰, 张秀玲, 张其春, 等.微生物燃料电池中阳极产电菌的研究进展[J]. 精细化工,2020,37(9):1729-1737.

    LIU Y F, ZHANG X L, ZHANG Q C, et al. Research progress of anode electrogenic microorganisms in microbial fuel cells[J]. Fine Chemicals,2020,37(9):1729-1737.
    [103] 费讲驰. 高效产电菌的筛选及其在微生物燃料电池中的应用研究[D]. 吉首: 吉首大学, 2014.
    [104] KIELY P D, CALL D F, YATES M D, et al. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera[J]. Applied Microbiology and Biotechnology,2010,88(1):371-380. doi: 10.1007/s00253-010-2757-2
    [105] LI M, ZHOU M H, TIAN X Y, et al. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity[J]. Biotechnology Advances,2018,36(4):1316-1327. ⊗ doi: 10.1016/j.biotechadv.2018.04.010
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  151
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08

目录

    /

    返回文章
    返回