Characteristics and sources apportionment of size-segregated atmospheric particles in Ili Valley Urban Agglomeration in summer
-
摘要:
为研究伊犁河谷城市群不同城市不同粒径大气颗粒物的组分特征和来源,于2021年7月19—29日,在伊犁河谷城市群的伊宁市、伊宁县、察布查尔锡伯自治县(简称察县)和霍城县布设6个采样点采集大气PM2.5和PM10样品,对样品中的化学组分(无机元素、水溶性离子和碳组分)进行分析,并使用化学质量平衡模型对其来源进行解析。结果表明:研究期间伊犁河谷核心区城市群PM2.5和PM10浓度均处于较低水平,分别为(22.81±2.79)和(58.81±6.95)μg/m3;从空间分布来看,伊宁市和伊宁县的颗粒物浓度相对较高,霍城县和察县的浓度相对较低。化学组分质量重构结果表明,地壳元素是研究期间PM2.5和PM10的主要组分,占比分别为39.8%和54.1%;其次为有机物,占比分别为33.2%和19.8%;二次无机离子在PM2.5和PM10中也有一定占比,分别为20.2%和10.7%。源解析结果表明,PM2.5主要来自二次颗粒物(29.1%)和扬尘源(28.3%)的贡献,工业源(16.1%)、机动车(10.5%)、燃煤源(9.3%)也均有一定贡献;PM10中则以扬尘源的贡献最大(42.3%),远高于二次颗粒物(14.7%)、工业源(14.1%)、机动车(8.4%)和燃煤源(7.3%)。
Abstract:To analyze the composition characteristics and sources of atmospheric particulate matter with different particle sizes in Ili Valley Urban Agglomeration, PM2.5 and PM10 samples were collected at six sampling sites in four cities/counties, including Yining City, Yining County, Qapqal Xibe Autonomous County and Huocheng County from July 19 to 29, 2021. The chemical components, including elements, ions and carbon components, of these samples were analyzed, and the chemical mass balance model was used to analyze their sources. The results showed that the concentrations of PM2.5 and PM10 in the urban agglomeration in Ili Valley core area were at low levels during the sampling period, which were (22.81±2.79) and (58.81±6.95) μg/m3, respectively. Among the four cities/counties, the concentrations in Yining City and Yining County were higher than those in Huocheng County and Qapqal Xibe Autonomous County. The results of chemical mass closure analysis showed that mineral dust was the main component of PM2.5 and PM10 during the study, accounting for 39.8% and 54.1%, respectively. Organic matter was the next, accounting for 33.2% and 19.8%, respectively. Secondary inorganic ions also accounted for 20.2% and 10.7% of PM2.5 and PM10, respectively. The result of sources apportionment by chemical mass balance model showed that PM2.5 was mainly contributed by secondary particulate matter (29.1%), dust sources (28.3%), industrial sources (16.1%), motor vehicles (10.5%) and coal combustion sources (9.3%), and PM10 by dust sources (42.3%), secondary particulate matter (14.7%), industrial sources (14.1%), motor vehicles (8.4%) and coal combustion sources (7.3%).
-
Key words:
- PM2.5 /
- PM10 /
- mass closure analysis /
- source apportionment /
- chemical mass balance model /
- Ili Valley
-
表 1 伊犁河河谷核心区城市群大气颗粒物采样点位信息
Table 1. Sampling point information of atmospheric particulate matter in urban agglomeration in the core area of Ili Valley
采样点位 东经/(°) 北纬/(°) 海拔/m 周边情况 霍城县生态环境局 80.870 069 67 44.059 065 47 601 北侧为小公园,南侧为道路,东、西侧为居民区 察布查尔电视台 81.148 899 83 43.831 855 45 602 东、南和北侧为居民区 伊宁县生态环境局 81.516 573 54 43.979 775 52 740 西侧为学校,东、南侧为居民区 伊宁市生态环境局 81.281 653 30 43.939 884 19 632 东南、东北侧60 m处为2条主要交通干道,西南、
西北侧为居民区新政府片区 81.299 545 27 43.917 580 05 593 南侧为居民区,东、北两侧300 m处均为道路 第二水厂站 81.335 882 81 43.941 568 52 616 东侧700 m、南侧500 m、西侧600 m和北侧500 m均为道路,东北侧1.5~2 km处存在较多施工工地 表 2 伊犁河谷城市群PM2.5和PM10的浓度分布
Table 2. Concentrations of PM2.5 and PM10 in Ili Valley Urban agglomeration
μg/m3 地区 PM2.5浓度 PM10浓度 霍城县 20.48±1.97 49.10±8.47 察县 22.80±4.88 57.62±13.75 伊宁县 19.64±4.71 63.25±14.94 伊宁市 24.60±4.80 60.95±12.90 平均值 22.80±4.80 58.81±13.35 表 3 研究期间6个站点的OC/EC
Table 3. Ratio of OC/EC at six sites during the study period
监测站点 PM2.5 PM10 OC/EC (OC/EC)min (OC/EC)max OC/EC (OC/EC)min (OC/EC)max 霍城县生态环境局 9.7 6.6 15.4 8.6 7.5 13.7 察布查尔电视台 7.8 5.4 14.0 8.1 6.8 13.2 伊宁县生态环境局 8.1 6.1 11.1 8.7 5.4 11.7 伊宁市生态环境局 7.5 6.2 12.3 8.2 6.5 11.8 第二水厂站 6.0 4.7 12.5 6.8 5.1 8.5 新政府片区 8.7 6.8 12.9 8.4 6.1 11.4 -
[1] WANG J, HU Z M, CHEN Y Y, et al. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China[J]. Atmospheric Environment,2013,68:221-229. doi: 10.1016/j.atmosenv.2012.10.070 [2] 张大伟, 王小菊, 刘保献, 等.北京城区大气PM2.5主要化学组分及污染特征[J]. 环境科学研究,2015,28(8):1186-1192.ZHANG D W, WANG X J, LIU B X, et al. Characteristics of PM2.5 and its chemical composition in the urban area of Beijing[J]. Research of Environmental Sciences,2015,28(8):1186-1192. [3] CAO J, XU H, XU Q, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese City[J]. Environmental Health Perspectives,2012,120(3):373-378. doi: 10.1289/ehp.1103671 [4] YANG D, QI S H, DEVI N L, et al. Characterization of polycyclic aromatic hydrocarbons in PM2.5 and PM10 in Tanggu District, Tianjin Binhai New Area, China[J]. Frontiers of Earth Science,2012,6(3):324-330. doi: 10.1007/s11707-012-0326-y [5] LIU S H, HUA S B, WANG K, et al. Spatial-temporal variation characteristics of air pollution in Henan of China: localized emission inventory, WRF/Chem simulations and potential source contribution analysis[J]. Science of the Total Environment,2018,624:396-406. doi: 10.1016/j.scitotenv.2017.12.102 [6] CAO J J, CHOW J, LEE S C, et al. Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China[J]. Aerosol and Air Quality Research, 2013,13:1197-1211. [7] CRAWFORD-BROWN D, BARKER T, ANGER A, et al. Ozone and PM related health co-benefits of climate change policies in Mexico[J]. Environmental Science & Policy,2012,17:33-40. [8] DUAN J C, TAN J H, WANG S L, et al. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing[J]. Journal of Environmental Sciences,2012,24(1):87-94. doi: 10.1016/S1001-0742(11)60731-6 [9] QIU X H, DUAN L, GAO J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China[J]. Journal of Environmental Sciences,2016,40:75-83. doi: 10.1016/j.jes.2015.10.021 [10] CHENG Z, LUO L, WANG S, et al. Status and characteristics of ambient PM2.5 pollution in global megacities[J]. Environment International,2016,89/90:212-221. doi: 10.1016/j.envint.2016.02.003 [11] 刀谞, 吉东生, 张显, 等. 京津冀及周边地区采暖季PM2.5化学组分变化特征[J]. 环境科学研究, 2021, 34(1): 1-10.DAO X, JI D S, ZHANG X, et al. Characteristics of chemical composition of PM2.5 in Beijing-Tianjin-Hebei and its surrounding areas during the heating period[J]. Research of Environmental Sciences, 2021, 34(1): 1-10. [12] DAO X, DI S, ZHANG X, et al. Composition and sources of particulate matter in the Beijing-Tianjin-Hebei region and its surrounding areas during the heating season[J]. Chemosphere,2022,291:132779. doi: 10.1016/j.chemosphere.2021.132779 [13] 兰紫娟, 江家豪, 林理量, 等.深圳市典型混合功能区PM2.5源解析研究[J]. 中国环境科学,2021,41(9):4001-4008. doi: 10.3969/j.issn.1000-6923.2021.09.004LAN Z J, JIANG J H, LIN L L, et al. Source analysis of PM2.5 in the typical mixed functional zone of Shenzhen[J]. China Environmental Science,2021,41(9):4001-4008. doi: 10.3969/j.issn.1000-6923.2021.09.004 [14] 田莎莎, 张显, 卞思思, 等.沈阳市PM2.5污染组分特征及其来源解析[J]. 中国环境科学,2019,39(2):487-496. doi: 10.3969/j.issn.1000-6923.2019.02.006TIAN S S, ZHANG X, BIAN S S, et al. Characteristics of PM2.5 pollution components and their sources in Shenyang[J]. China Environmental Science,2019,39(2):487-496. doi: 10.3969/j.issn.1000-6923.2019.02.006 [15] 潘成珂. 张掖市大气细颗粒物PM2.5的化学组成及来源解析[D]. 兰州: 兰州大学, 2022. [16] SHI G L, ZENG F, LI X, et al. Estimated contributions and uncertainties of PCA/MLR-CMB results: source apportionment for synthetic and ambient datasets[J]. Atmospheric Environment,2011,45(17):2811-2819. doi: 10.1016/j.atmosenv.2011.03.007 [17] LI Z F, ZHU Y, WANG S X, et al. Source contribution analysis of PM2.5 using response surface model and particulate source apportionment technology over the PRD region, China[J]. Science of the Total Environment,2022,818:151757. doi: 10.1016/j.scitotenv.2021.151757 [18] 刁刘丽, 李森, 刘保双, 等.驻马店市区采暖季PM2.5时间和空间来源解析研究[J]. 环境科学研究,2021,34(1):79-91.DIAO L L, LI S, LIU B S, et al. Temporal and spatial source apportionment during the heating period in Zhumadian[J]. Research of Environmental Sciences,2021,34(1):79-91. [19] 王敬, 毕晓辉, 冯银厂, 等.乌鲁木齐市重污染期间PM2.5污染特征与来源解析[J]. 环境科学研究,2014,27(2):113-119.WANG J, BI X H, FENG Y C, et al. Pollution characteristics and source apportionment of PM2.5 during heavy pollution process in Urumchi City[J]. Research of Environmental Sciences,2014,27(2):113-119. [20] 环境保护部. 大气颗粒物来源解析技术指南 [S]. 北京: 中国环境科学出版社, 2013. [21] BI X H, FENG Y C, WU J H, et al. Source apportionment of PM10 in six cities of Northern China[J]. Atmospheric Environment,2007,41(5):903-912. doi: 10.1016/j.atmosenv.2006.09.033 [22] 任丽红, 周志恩, 赵雪艳, 等.重庆主城区大气PM10及PM2.5来源解析[J]. 环境科学研究,2014,27(12):1387-1394.REN L H, ZHOU Z E, ZHAO X Y, et al. Source apportionment of PM10 and PM2.5 in urban areas of Chongqing[J]. Research of Environmental Sciences,2014,27(12):1387-1394. [23] 赵雪艳, 谷超, 杨焕明, 等.新疆奎独乌区域冬季大气重污染过程PM2.5组成特征及来源解析[J]. 环境科学研究,2017,30(10):1515-1523.ZHAO X Y, GU C, YANG H M, et al. Chemical composition and source apportionment of PM2.5 during a winter air pollution episode in the Kui-du-wu area of Xinjiang Uygur Autonomous Region[J]. Research of Environmental Sciences,2017,30(10):1515-1523. [24] YU H, ZHAO X Y, WANG J, et al. Chemical characteristics of road dust PM2.5 fraction in oasis cities at the margin of Tarim Basin[J]. Journal of Environmental Sciences,2020,95:217-224. doi: 10.1016/j.jes.2020.03.030 [25] MILLER M S, FRIEDLANDER S K, HIDY G M. A chemical element balance for the Pasadena aerosol[J]. Journal of Colloid and Interface Science,1972,39(1):165-176. doi: 10.1016/0021-9797(72)90152-X [26] 徐虹, 林丰妹, 毕晓辉, 等.杭州市大气降尘与PM10化学组成特征的研究[J]. 中国环境科学,2011,31(1):1-7.XU H, LIN F M, BI X H, et al. Chemical characteristics of atmospheric dustfall and PM10 in Hangzhou[J]. China Environmental Science,2011,31(1):1-7. [27] 宋娜, 徐虹, 毕晓辉, 等.海口市PM2.5和PM10来源解析[J]. 环境科学研究,2015,28(10):1501-1509.SONG N, XU H, BI X H, et al. Source apportionment of PM2.5 and PM10 in Haikou[J]. Research of Environmental Sciences,2015,28(10):1501-1509. [28] 杨妍妍, 李金香, 梁云平, 等.应用受体模型(CMB)对北京市大气PM2.5来源的解析研究[J]. 环境科学学报,2015,35(9):2693-2700.YANG Y Y, LI J X, LIANG Y P, et al. Source apportionment of PM2.5 in Beijing by the chemical mass balance[J]. Acta Scientiae Circumstantiae,2015,35(9):2693-2700. [29] 王涛, 何浩奇, 夏忠欢, 等.2015年南京市PM2.5与PM10的污染特征[J]. 环境工程学报,2017,11(11):5978-5985. doi: 10.12030/j.cjee.201608024WANG T, HE H Q, XIA Z H, et al. Pollution characteristics of PM2.5 and PM10 in 2015 in Nanjing, China[J]. Chinese Journal of Environmental Engineering,2017,11(11):5978-5985. doi: 10.12030/j.cjee.201608024 [30] 赵雪艳, 王歆华, 褚彦辛, 等.忻州市大气PM2.5的化学组成质量平衡特征及来源解析[J]. 环境工程学报,2017,11(8):4660-4668. doi: 10.12030/j.cjee.201607230ZHAO X Y, WANG X H, CHU Y X, et al. Characterization of chemical composition mass balance and source appointment of ambient PM2.5 in Xinzhou City[J]. Chinese Journal of Environmental Engineering,2017,11(8):4660-4668. doi: 10.12030/j.cjee.201607230 [31] YANG F, TAN J, ZHAO Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics,2011,11(11):5207-5219. doi: 10.5194/acp-11-5207-2011 [32] 高健, 柴发合.我国大气颗粒物污染研究及其对控制对策的支撑[J]. 环境保护,2014,42(11):32-34. doi: 10.14026/j.cnki.0253-9705.2014.11.005GAO J, CHAI F H. Research on cause of PM pollution and its support on control strategy making[J]. Environmental Protection,2014,42(11):32-34. doi: 10.14026/j.cnki.0253-9705.2014.11.005 [33] PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation[J]. Particuology,2014,13:1-26. doi: 10.1016/j.partic.2013.11.001 [34] HAN S Q, BIAN H, ZHANG Y F, et al. Effect of aerosols on visibility and radiation in spring 2009 in Tianjin, China[J]. Aerosol and Air Quality Research,2012,12(2):211-217. doi: 10.4209/aaqr.2011.05.0073 [35] 古金霞, 吴丽萍, 霍光耀, 等.天津市PM2.5中水溶性无机离子污染特征及来源分析[J]. 中国环境监测,2013,29(3):30-34.GU J X, WU L P, HUO G Y, et al. Pollution character and source of water-soluble inorganic ions in PM2.5 over Tianjin[J]. Environmental Monitoring in China,2013,29(3):30-34. [36] 刘保献, 杨懂艳, 张大伟, 等.北京城区大气PM2.5主要化学组分构成研究[J]. 环境科学,2015,36(7):2346-2352.LIU B X, YANG D Y, ZHANG D W, et al. Chemical species of PM2.5 in the urban area of Beijing[J]. Environmental Science,2015,36(7):2346-2352. [37] WU G, DU X, WU X F, et al. Chemical composition, mass closure and sources of atmospheric PM10 from industrial sites in Shenzhen, China[J]. Journal of Environmental Sciences,2013,25(8):1626-1635. doi: 10.1016/S1001-0742(12)60238-1 [38] ZHANG X Y, WANG Y Q, NIU T, et al. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J]. Atmospheric Chemistry and Physics,2012,12(2):779-799. doi: 10.5194/acp-12-779-2012 [39] 刘雨思, 李杏茹, 张怡萌, 等.济南市秋冬季大气细粒子污染特征及来源[J]. 环境化学,2017,36(4):787-798. doi: 10.7524/j.issn.0254-6108.2017.04.2016072703LIU Y S, LI X R, ZHANG Y M, et al. Characteristics and sources of airborne fine particles during the fall and winter in Ji'nan[J]. Environmental Chemistry,2017,36(4):787-798. doi: 10.7524/j.issn.0254-6108.2017.04.2016072703 [40] 王涵, 王崇臣, 王淑兰, 等.邢台市冬季一次重污染过程PM2.5污染特征分析[J]. 环境工程技术学报,2022,12(1):22-28. doi: 10.12153/j.issn.1674-991X.20210059WANG H, WANG C C, WANG S L, et al. Analysis of PM2.5 pollution characteristics of a winter heavy pollution process in Xingtai City[J]. Journal of Environmental Engineering Technology,2022,12(1):22-28. doi: 10.12153/j.issn.1674-991X.20210059 [41] 狄一安, 杨勇杰, 周瑞, 等.北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学,2013,32(9):1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002DI Y A, YANG Y J, ZHOU R, et al. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry,2013,32(9):1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002 [42] 郭照冰, 包春晓, 陈天蕾, 等.北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析[J]. 大气科学学报,2011,34(6):683-687. doi: 10.3969/j.issn.1674-7097.2011.06.006GUO Z B, BAO C X, CHEN T L, et al. Mass concentration characteristics and source apportionment of water-soluble inorganic ions in aerosol in Beijing during 2008 Beijing Olympic Games[J]. Transactions of Atmospheric Sciences,2011,34(6):683-687. doi: 10.3969/j.issn.1674-7097.2011.06.006 [43] 王伟, 姬亚芹, 赵哲, 等. 鞍山城区夏季PM2.5中碳组分污染特征及来源[J]. 环境工程技术学报, 2015, 5(2): 91-96.WANG W, JI Y Q, ZHAO Z, et al. Pollution characteristics of carbon fractions in PM2.5 and their sources in urban area of Anshan City in summer[J]Journal of Environmental Engineering Technology, 2015, 5(2): 91-96. [44] 王果, 迪丽努尔·塔力甫, 买里克扎提·买合木提, 等.乌鲁木齐市PM2.5和PM2.5~10中碳组分季节性变化特征[J]. 中国环境科学,2016,36(2):356-362. doi: 10.3969/j.issn.1000-6923.2016.02.006WANG G, DILNUR T, MAILIKEZHATI M, et al. Seasonal changes of carbonaceous speeies in PM2.5, PM2.5-10 in Urumqi[J]. China Environmental Science,2016,36(2):356-362. doi: 10.3969/j.issn.1000-6923.2016.02.006 [45] 黄成, 胡磬遥, 鲁君.轻型汽油车尾气OC和EC排放因子实测研究[J]. 环境科学,2018,39(7):3110-3117. doi: 10.13227/j.hjkx.201712218HUANG C, HU Q Y, LU J. Measurements of OC and EC emission factors for light-duty gasoline vehicles[J]. Environmental Science,2018,39(7):3110-3117. doi: 10.13227/j.hjkx.201712218 [46] 樊啸辰, 郎建垒, 程水源, 等.北京市大气环境PM2.5和PM1及其碳质组分季节变化特征及来源分析[J]. 环境科学,2018,39(10):4430-4438.FAN X C, LANG J L, CHENG S Y, et al. Seasonal variation and source analysis for PM2.5, PM1 and their carbonaceous components in Beijing[J]. Environmental Science,2018,39(10):4430-4438. [47] 康晖, 朱彬, 王红磊, 等.长三角典型站点冬季大气PM2.5中OC、EC污染特征[J]. 环境科学,2018,39(3):961-971.KANG H, ZHU B, WANG H L, et al. Characterization and variation of organic carbon(OC) and elemental carbon(EC) in PM2.5 during the winter in the Yangtze River Delta region, China[J]. Environmental Science,2018,39(3):961-971. [48] MOHR C, DECARLO P F, HERINGA M F. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data[J]. Atmospheric Chemistry and Physics,2011,11(4):27383-27420. [49] TANNER P A, MA H L, YU P K N. Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong[J]. Environmental Science & Technology,2008,42(19):7111-7117. □