留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边界定位法的固体废物填埋场渗漏应急检测技术及应用

刘景财 孙晓晨 郑开达 常景润 刘玉强 能昌信 董路

刘景财,孙晓晨,郑开达,等.基于边界定位法的固体废物填埋场渗漏应急检测技术及应用[J].环境工程技术学报,2022,12(6):1978-1984 doi: 10.12153/j.issn.1674-991X.20220606
引用本文: 刘景财,孙晓晨,郑开达,等.基于边界定位法的固体废物填埋场渗漏应急检测技术及应用[J].环境工程技术学报,2022,12(6):1978-1984 doi: 10.12153/j.issn.1674-991X.20220606
LIU J C,SUN X C,ZHENG K D,et al.Emergency detection technology of solid waste landfill leakage based on boundary location method and its applications[J].Journal of Environmental Engineering Technology,2022,12(6):1978-1984 doi: 10.12153/j.issn.1674-991X.20220606
Citation: LIU J C,SUN X C,ZHENG K D,et al.Emergency detection technology of solid waste landfill leakage based on boundary location method and its applications[J].Journal of Environmental Engineering Technology,2022,12(6):1978-1984 doi: 10.12153/j.issn.1674-991X.20220606

基于边界定位法的固体废物填埋场渗漏应急检测技术及应用

doi: 10.12153/j.issn.1674-991X.20220606
基金项目: 国家重点研发计划项目(2020YFC1806304,2018YFC1800902);国家自然科学基金项目(51708529)
详细信息
    作者简介:

    刘景财(1985—),男,工程师,硕士,主要从事环境监测技术研究,wdf04@163.com

    通讯作者:

    刘玉强(1975—),男,研究员,硕士,主要从事固体废物填埋及场地风险评估研究,liuyq@craes.org.cn

  • 中图分类号: X705;X830.7

Emergency detection technology of solid waste landfill leakage based on boundary location method and its applications

  • 摘要:

    人工衬层系统是固体废物填埋处置的重要防护屏障,一旦产生破损将造成渗滤液渗漏,严重危害环境和人体健康,因此及时有效地对人工衬层进行渗漏检测十分重要。目前常用的渗漏检测技术,如示踪剂法、偶极子法等方法不能适用于运行中填埋场的渗漏检测,难以满足突发渗漏情况下应急检测需求。针对填埋场渗漏应急检测问题,提出一种新的土工膜渗漏应急检测方法——边界定位法,该方法具有无损检测、操作方便和数据处理迅速高效的优点。通过在填埋场四周布设电极扩大检测范围,利用集成开发的边界定位检测系统计算获取的信号,最终给定渗漏源的GPS坐标和数据可视化结果。以我国华东地区生活垃圾填埋场和危险废物填埋场为研究案例,分析基于边界定位法的渗漏应急检测技术在实际工程中的应用效果。结果表明:边界定位法能够实现渗漏源的快速定位,其给定的渗漏点位置与实际开挖验证位置的最大误差小于2 m,且可以通过现场开挖过程跟踪测量进行纠正。当填埋场存在多个渗漏点时,对于渗漏点之间距离超过2 m的多个渗漏点均可以有效检出;如果渗漏点之间距离小于1 m,信号采集误差使得边界定位检测系统将其计算为1个渗漏点。

     

  • 图  1  基于边界定位法的渗漏检测示意

    Figure  1.  Schematic of leakage detection based on boundary location method

    图  2  检测系统的下位机和上位机

    Figure  2.  Lower computer and upper computer of detection system

    图  3  边界定位检测系统的设备流程

    Figure  3.  Equipment schematic of boundary location detection system

    图  4  某生活垃圾填埋场场地概况

    Figure  4.  Site situation of a municipal solid waste landfill

    图  5  案例1的电流密度分布

    Figure  5.  Current density distribution of case 1

    图  6  案例1的库底介质电阻率分布

    Figure  6.  Resistivity distribution of reservoir bottom medium of case 1

    图  7  案例1生活垃圾填埋场现场开挖结果

    Figure  7.  Site excavation results of municipal solid waste landfill of case 1

    图  8  某危险废物填埋场场地概况

    Figure  8.  Site situation of a hazardous waste landfill

    图  9  案例2电流密度分布

    Figure  9.  Current density distribution of case 2

    图  10  案例2库底介质电阻率分布

    Figure  10.  Resistivity distribution of reservoir bottom medium of case 2

    图  11  案例2危险废物填埋场现场开挖结果

    Figure  11.  Site excavation results of hazardous waste landfill of case 2

    表  1  案例1的渗漏点的预测坐标、实际坐标及误差

    Table  1.   Predicted coordinates, actual coordinates and errors of leakage points in case 1

    渗漏点预测坐标/(°)实际坐标/(°)误差/m
    1号(24.694 555E,
    115.624 736N)
    (24.694 539E,
    115.624 736N)
    0.764
    2号(24.694 227E,
    115.624 405N)
    (24.694 220E,
    115.624 393N)
    1.483
    3号(24.694 434E,
    115.624 121N)
    (24.694 423E,
    115.624 106N)
    1.830
    下载: 导出CSV

    表  2  案例2的渗漏点的预测坐标、实际坐标及误差

    Table  2.   Predicted coordinates, actual coordinates and errors of leakage points in case 2

    渗漏点预测坐标/(°)实际坐标/(°)误差/m
    1号(32.052 081E,
    119.742 713N)
    (32.052 070E,
    119.742 700N)
    1.568
    2号(32.053 102E,
    119.743 010N)
    (32.053 090E,
    119.743 000N)
    1.294
    3号(32.053 274E,
    119.742 713N)
    (32.053 270E,
    119.742 700N)
    1.488
    4号(32.053 505E,
    119.742 416N)
    (32.053 504E,
    119.742 410N)
    0.650
    5号(32.053 500E,
    119.742 414N)
    (32.053 505E,
    119.742 415N)
    0.290
    6号(32.053 342E,
    119.743 100N)
    (32.053 341E,
    119.743 097N)
    0.310
    7号(32.053 341E,
    19.743 098N)
    (32.053 342E,
    119.743 100N)
    0.256
    8号(32.052 358E,
    119.742 708N)
    (32.052 360E,
    119.742 700N)
    0.895
    下载: 导出CSV
  • [1] 詹梨苹, 赵锐, 杨天学, 等.基于文献计量分析的大数据驱动城市固体废物监管研究进展[J]. 环境工程技术学报,2021,11(6):1217-1225. doi: 10.12153/j.issn.1674-991X.20210081

    ZHAN L P, ZHAO R, YANG T X, et al. A bibliometric analysis of research development regarding big data-driven municipal waste management[J]. Journal of Environmental Engineering Technology,2021,11(6):1217-1225. doi: 10.12153/j.issn.1674-991X.20210081
    [2] BARBARA K, ANDREW C, ANDREW V, et al. Circular economy: getting the circulation going[J]. Nature,2016,531:443-446. doi: 10.1038/531443a
    [3] INGRAO C, MESSINEO A, BELTRAMO R, et al. How can life cycle thinking support sustainability of buildings: investigating life cycle assessment applications for energy efficiency and environmental performance[J]. Journal of Cleaner Production,2018,201:556-569. doi: 10.1016/j.jclepro.2018.08.080
    [4] SUN X C, XU Y, LIU Y Q, et al. Evolution of geomembrane degradation and defects in a landfill: impacts on long-term leachate leakage and groundwater quality[J]. Journal of Cleaner Production,2019,224:335-345. doi: 10.1016/j.jclepro.2019.03.200
    [5] EWAIS A M R, ROWE R K. Effect of aging on the stress crack resistance of an HDPE geomembrane[J]. Polymer Degradation and Stability,2014,109:194-208. doi: 10.1016/j.polymdegradstab.2014.06.013
    [6] 向锐, 雷国元, 徐亚, 等.填埋场环境下HDPE膜老化特性及其对周边地下水污染风险的影响[J]. 环境科学研究,2020,33(4):978-986. doi: 10.13198/j.issn.1001-6929.2019.05.25

    XIANG R, LEI G Y, XU Y, et al. Aging behaviors of HDPE geomembrane in landfill environment and its impact on pollution risk of surrounding groundwater[J]. Research of Environmental Sciences,2020,33(4):978-986. doi: 10.13198/j.issn.1001-6929.2019.05.25
    [7] 张士宽, 王月, 安达, 等.垃圾填埋场地下水污染修复技术优选研究[J]. 环境工程技术学报,2017,7(4):463-469. doi: 10.3969/j.issn.1674-991X.2017.04.063

    ZHANG S K, WANG Y, AN D, et al. Remediation technology optimization for groundwater contamination of municipal solid waste landfill[J]. Journal of Environmental Engineering Technology,2017,7(4):463-469. doi: 10.3969/j.issn.1674-991X.2017.04.063
    [8] 程虎, 张佳鹏, 宋洋, 等.水热炭在土壤环境中的应用研究进展和展望[J]. 环境工程技术学报,2021,11(6):1202-1209.

    CHENG H, ZHANG J P, SONG Y, et al. The application of hydrochar in soil environment: study progress and prospects[J]. Journal of Environmental Engineering Technology,2021,11(6):1202-1209.
    [9] 郭燕莎, 王劲峰, 殷秀兰.地下水监测网优化方法研究综述[J]. 地理科学进展,2011,30(9):1159-1166. doi: 10.11820/dlkxjz.2011.09.011

    GUO Y S, WANG J F, YIN X L. Review of the optimization methods for groundwater monitoring network[J]. Progress in Geography,2011,30(9):1159-1166. doi: 10.11820/dlkxjz.2011.09.011
    [10] KIM G B, KIM T, MYOUNG J M, et al. Diffusion tube, dopant source for a diffusion process and diffusion method using the diffusion tube and the dopant source: US7963247[P]. 2011-06-21.
    [11] 张清雨, 何静, 李娜, 等.DNA示踪剂的合成方法及应用现状[J]. 化工新型材料,2022,50(2):63-67.

    ZHANG Q Y, HE J, LI N, et al. Synthesis method and application status of DNA tracer[J]. New Chemical Materials,2022,50(2):63-67.
    [12] 赵阳, 雷国元, 徐亚, 等.典型荧光示踪剂在包气带中的迁移、吸附特性[J]. 中国环境科学,2020,40(9):3842-3848. doi: 10.3969/j.issn.1000-6923.2020.09.016

    ZHAO Y, LEI G Y, XU Y, et al. Migration, adsorption characteristics of typical fluorescent tracer in vadose zone[J]. China Environmental Science,2020,40(9):3842-3848. doi: 10.3969/j.issn.1000-6923.2020.09.016
    [13] GUZMÁN E, ORTEGA F, RUBIO R G. Layer-by-layer materials for the fabrication of devices with electrochemical applications[J]. Energies,2022,15(9):3399. doi: 10.3390/en15093399
    [14] 潘俊峰, 能昌信, 张赟, 等.便携式渗漏检测装置在填埋场防渗层完整性检测的应用[J]. 环境科学研究,2008,21(6):43-46. doi: 10.13198/j.res.2008.06.45.panjf.022

    PAN J F, NAI C X, ZHANG Y, et al. Portable leakage detection system and its application into integrity inspection of landfill liner[J]. Research of Environmental Sciences,2008,21(6):43-46. doi: 10.13198/j.res.2008.06.45.panjf.022
    [15] 王勋, 陈琼, 鄢俊.三电极法在土工膜渗漏检测中的应用[J]. 环境卫生工程,2019,27(1):60-63.

    WANG X, CHEN Q, YAN J. Application of three-electrode method in detection of geomembrane leakage[J]. Environmental Sanitation Engineering,2019,27(1):60-63.
    [16] 能昌信, 王彦文, 王琪, 等.填埋场渗漏检测高压直流电法等效电路模型的建立[J]. 环境科学,2005,26(1):200-203. doi: 10.3321/j.issn:0250-3301.2005.01.043

    NAI C X, WANG Y W, WANG Q, et al. Setup of high voltage direct circuit equivalent circuit model in leakage detection of landfill[J]. Environmental Science,2005,26(1):200-203. doi: 10.3321/j.issn:0250-3301.2005.01.043
    [17] 张辰, 能昌信, 王振翀.基于分区多点供电的填埋场渗漏实时检测系统研究[J]. 环境科学与技术,2012,35(11):148-151. doi: 10.3969/j.issn.1003-6504.2012.11.032

    ZHANG C, NAI C X, WANG Z C. Landfill real time leakage detection system based on subarea multipoint power supply[J]. Environmental Science & Technology,2012,35(11):148-151. doi: 10.3969/j.issn.1003-6504.2012.11.032
    [18] 能昌信, 董路, 王琪, 等.填埋场地电模型的电学特性[J]. 中国环境科学,2004,24(6):758-760. doi: 10.3321/j.issn:1000-6923.2004.06.028

    NAI C X, DONG L, WANG Q, et al. The electricity characteristics of the earth-electricity model in landfill[J]. China Environmental Science,2004,24(6):758-760. doi: 10.3321/j.issn:1000-6923.2004.06.028
    [19] 董路, 邢强, 能昌信, 等. 危险废物暂存库渗漏风险规避措施与实践[J]. 环境科学研究, 2005, 18(增刊1): 67-70.

    DONG L, XING Q, NAI C X, et al. Risk evade method and practice of hazardous waste impoundments leakage[J]. Research of Environmental Sciences, 2005, 18(Suppl 1): 67-70.
    [20] 董路, 王琪, 刘晓华, 等.电极铺设方式对填埋场渗漏检测定位的影响[J]. 中国环境科学,2005,25(5):528-530. doi: 10.3321/j.issn:1000-6923.2005.05.005

    DONG L, WANG Q, LIU X H, et al. The influence between two kinds of examinating measure electrodes paving patterns in high voltage DC method for examinating measure leak in the simulative membrane[J]. China Environmental Science,2005,25(5):528-530. □ doi: 10.3321/j.issn:1000-6923.2005.05.005
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  235
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回