Characteristics of water quality change during the 13th Five-Year Plan period and trend prediction during the 14th Five-Year Plan period in three major basins of Hainan Island
-
摘要:
为服务海南自由贸易港水生态环境保护,基于海南省地表水环境质量监测网监测数据,对海南岛南渡江、昌化江、万泉河三大流域“十三五”期间水质状况、主要污染物浓度、综合污染指数变化进行了分析,采用Spearman秩相关系数研判其污染变化特征,并采用均值GM(1,1)模型(EGM)预测“十四五”期间水质变化趋势。结果表明:“十三五”期间,海南岛三大流域水质状况总体呈稳中向好趋势,南渡江、万泉河流域水质优良比例分别上升至96.3%、100%,昌化江流域水质优良比例保持在100%;三大流域CODMn、CODCr、氨氮、总磷浓度年均值均处于较低水平,低于GB 3838—2002《地表水环境质量标准》Ⅱ类标准限值,其中CODCr年均值均低于Ⅰ类标准限值,“十三五”期间除氨氮浓度下降外,其他指标均有不同程度的上升或波动,上升幅度为6.7%~23.8%;干流综合污染指数均小幅下降,下降幅度为0.03~0.04,主要支流综合污染指数自上游到下游呈波动上升的空间变化特征。EGM预测结果表明,“十四五”期间海南岛三大流域干流和绝大部分支流水质综合污染指数呈上升趋势,最大上升幅度达108.3%,三大流域水环境仍面临较大的压力,尤其是支流汇入带来的污染负荷不容忽视。“十四五”期间,应以系统保护思路,落实“六水共治”“一河一策”等措施,进一步改善三大流域水质。
-
关键词:
- 海南岛 /
- 三大流域 /
- 水质变化 /
- 综合污染指数 /
- 均值GM(1,1)模型
Abstract:Based on the monitoring data of Hainan Province surface water environment quality network, the water quality, concentration of major pollutants, variation of composite pollution index in three major basins of Nandu River, Changhua River, Wanquan River in Hainan Island during the 13th Five-Year Plan period were analyzed, and Spearman rank correlation coefficient was used to research and judge the pollution changecharacteristic, and the mean GM(1,1) model (EGM) was used to predict the trend of water quality change during the 14th Five-Year Plan period for servicing the water ecological environment protection of Hainan Free Trade Port. The results showed that the water quality of three major basins in Hainan Island was getting better steadily during the 13th Five-Year Plan period. The proportion of Grade Ⅰ-Ⅲ water quality of Environmental Quality Standards for Surface Water (GB 3838-2002) in Nandu River basin and Wanquan River basin increased to 96.3% and 100%, respectively. The proportion of Grade Ⅰ-Ⅲ water quality in Changhua River basin remained at 100%. The average annual concentrations of permanganate index, chemical oxygen demand, ammonia nitrogen and total phosphorus were all at a low level, which were lower than the standard limits of Grade Ⅱ, and the average annual concentration of chemical oxygen demand was lower than the standard limits of Grade Ⅰ. The average annual concentration of ammonia nitrogen was decreased during the 13th Five-Year Plan period. The average annual concentrations of permanganate index, chemical oxygen demand and total phosphorus were increased or fluctuated during the 13th Five-Year Plan period, with an increase range of 6.7% to 23.8%. The composite pollution index of the mainstream declined with a range of 0.03 to 0.04. The composite pollution index of the main tributaries increased with fluctuations from upstream to downstream. EGM predicted that during 14th Five-year Plan period, the comprehensive pollution index of the mainstreams of three major basins and most of the tributaries showed an upward trend, with a maximum increase of 108.3%. The water environment of three major basins in Hainan Island would face high pressure, and especially the pollution load from the tributaries should not be neglected. According to the prediction results, in order to improve the water quality of the three major basins, it was necessary to implement measures such as “Governance of Six Waters” and “One River One Policy” in a systematic protection approach during the 14th Five-Year Plan.
-
表 1 河流/流域断面水质评价
Table 1. Water quality assessment of sections of river/basin
河流/流域的断面水质类别比例 河流/流域
水质评价Ⅰ~Ⅲ类水质比例≥90% 优 75%≤Ⅰ~Ⅲ类水质比例<90% 良好 Ⅰ~Ⅲ类水质比例<75%,且劣Ⅴ类比例<20% 轻度污染 Ⅰ~Ⅲ类水质比例<75%,且20%≤劣Ⅴ类比例<40% 中度污染 Ⅰ~Ⅲ类水质比例<60%,且劣Ⅴ类比例≥40% 重度污染 表 2 “十三五”期间海南岛三大流域总体水质、干流水质和支流水质
Table 2. Overall, main stream, tributary water quality of three major basins in Hainan Island during the 13th Five-Year Plan
流域 年份 总体水质 干流水质 支流水质 南渡江流域 2016 优 优 南淀河水质为轻度污染,南溪河、南叉河、南春河、腰子河、南坤河、绿现水、大塘河、海仔河、龙州河、巡崖河水质为优 2017 优 优 巡崖河水质良好,南溪河、南叉河、南春河、腰子河、南坤河、绿现水、大塘河、海仔河、龙州河、南淀河水质为优 2018 优 优 绿现水、龙州河、巡崖河水质良好,南溪河、南叉河、南春河、腰子河、南坤河、大塘河、海仔河、南淀河水质为优 2019 优 优 南坤河、绿现水、龙州河、巡崖河水质良好,南溪河、南叉河、南春河、腰子河、大塘河、海仔河、南淀河水质为优 2020 优 优 大塘河、绿现水、龙州河、巡崖河水质良好,南溪河、南叉河、南春河、腰子河、南坤河、海仔河、南淀河水质为优 昌化江流域 2016 优 优 优 2017 优 优 优 2018 优 优 优 2019 优 优 乐中水、石碌河水质良好,水满河、南圣河、南巴水水质为优 2020 优 优 乐中水水质良好,石碌河、水满河、南圣河、南巴水水质为优 万泉河流域 2016 优 优 塔洋河水质为轻度污染,中平溪、三更罗溪、大边河、营盘溪、青梯溪、加浪河水质为优 2017 优 优 塔洋河水质良好,中平溪、三更罗溪、大边河、营盘溪、青梯溪、加浪河水质为优 2018 优 优 营盘溪水质良好,中平溪、三更罗溪、大边河、青梯溪、加浪河、塔洋河水质为优 2019 优 优 营盘溪、塔洋河水质良好,中平溪、三更罗溪、大边河、青梯溪、加浪河水质为优 2020 优 优 塔洋河水质良好,中平溪、三更罗溪、大边河、营盘溪、青梯溪、加浪河水质为优 表 3 “十三五”期间海南岛三大流域干流及支流综合污染指数及变化趋势
Table 3. Main stream, tributary composite pollution index and variation trend of three major basins in Hainan Island during the 13th Five-Year Plan period
流域 干流/支流 河流名称 综合污染指数 rs 变化趋势 2016年 2017年 2018年 2019年 2020年 南渡江流域 干流 南渡江干流 0.40 0.36 0.38 0.40 0.36 −0.316 无显著变化 上流支流 南溪河 0.15 0.14 0.13 0.16 0.17 0.600 无显著变化 南叉河 0.23 0.21 0.19 0.18 0.23 −0.205 无显著变化 南春河 0.21 0.26 0.21 0.19 0.26 0.053 无显著变化 中游支流 腰子河 0.34 0.32 0.28 0.27 0.24 −1.000 显著下降 南坤河 0.43 0.36 0.41 0.46 0.41 0.103 无显著变化 绿现水 0.41 0.35 0.48 0.50 0.52 0.900 无显著变化 下游支流 大塘河 0.41 0.42 0.36 0.34 0.39 −0.600 无显著变化 海仔河 0.43 0.36 0.41 0.41 0.50 0.359 无显著变化 龙州河 0.51 0.49 0.50 0.48 0.50 −0.410 无显著变化 南淀河 0.42 0.34 0.42 0.44 0.46 0.821 无显著变化 巡崖河 0.59 0.45 0.52 0.55 0.72 0.400 无显著变化 昌化江流域 干流 昌化江干流 0.32 0.27 0.28 0.29 0.28 −0.205 无显著变化 上游支流 水满河 0.26 0.23 0.26 0.26 0.29 0.671 无显著变化 南圣河 0.29 0.28 0.28 0.30 0.29 0.369 无显著变化 下游支流 乐中水 0.33 0.31 0.31 0.44 0.41 0.564 无显著变化 南巴水 0.26 0.30 0.25 0.35 0.30 0.462 无显著变化 石碌河 0.41 0.37 0.39 0.38 0.40 −0.100 无显著变化 万泉河流域 干流 万泉河干流 0.32 0.28 0.26 0.30 0.29 −0.200 无显著变化 上游支流 中平溪 0.25 0.26 0.25 0.24 0.24 −0.791 无显著变化 三更罗溪 0.32 0.37 0.31 0.34 0.28 −0.500 无显著变化 大边河 0.32 0.27 0.27 0.28 0.29 −0.051 无显著变化 营盘溪 0.52 0.34 0.40 0.38 0.35 −0.400 无显著变化 青梯溪 0.33 0.31 0.42 0.40 0.41 0.600 无显著变化 下游支流 加浪河 0.50 0.41 0.39 0.44 0.43 −0.200 无显著变化 塔洋河 0.64 0.52 0.46 0.48 0.60 −0.300 无显著变化 表 4 “十四五”期间海南岛三大流域干流及支流综合污染指数预测结果
Table 4. Predicted results of main stream and tributary composite pollution index of three major basins in Hainan Island during the 14th Five-Year Plan period
流域 干流/支流 河流名称 综合污染指数 平均模拟相对误差/% 2021年 2022年 2023年 2024年 2025年 南渡江流域 干流 南渡江干流 0.38 0.38 0.38 0.39 0.39 3.98 上游支流 南溪河 0.18 0.20 0.22 0.23 0.25 4.87 南叉河 0.22 0.22 0.23 0.23 0.24 8.72 南春河 0.22 0.22 0.22 0.22 0.22 13.39 中游支流 腰子河 0.22 0.20 0.18 0.17 0.15 1.75 南坤河 0.46 0.48 0.50 0.53 0.55 6.12 绿现水 0.60 0.67 0.75 0.84 0.93 6.95 下游支流 大塘河 0.35 0.34 0.33 0.32 0.31 7.31 海仔河 0.54 0.60 0.66 0.73 0.81 3.47 龙州河 0.50 0.50 0.50 0.50 0.50 1.43 南淀河 0.52 0.56 0.62 0.67 0.74 4.18 巡崖河 0.81 0.95 1.10 1.29 1.50 4.26 昌化江流域 干流 昌化江干流 0.29 0.29 0.30 0.30 0.31 1.78 上游支流 水满河 0.31 0.33 0.35 0.38 0.41 2.33 南圣河 0.30 0.31 0.31 0.32 0.32 1.72 下游支流 乐中水 0.48 0.54 0.61 0.68 0.77 7.46 南巴水 0.33 0.34 0.35 0.36 0.37 10.21 石碌河 0.41 0.41 0.42 0.43 0.44 1.56 万泉河流域 干流 万泉河干流 0.30 0.31 0.32 0.32 0.33 3.97 上游支流 中平溪 0.23 0.22 0.22 0.21 0.21 0.98 三更罗溪 0.27 0.25 0.23 0.22 0.20 5.59 大边河 0.30 0.30 0.31 0.32 0.33 0.88 营盘溪 0.37 0.37 0.37 0.37 0.37 6.12 青梯溪 0.46 0.49 0.52 0.56 0.60 6.96 下游支流 加浪河 0.45 0.46 0.47 0.48 0.50 3.16 塔洋河 0.59 0.62 0.66 0.69 0.73 8.68 -
[1] 海南省地方志编纂委员会. 海南省志·水利志[EB/OL]. (2009-08-27)[2022-02-27]. http://www.hnszw.org.cn/zssk.php?Class=123&Deep=3. [2] 海南省统计局. 海南统计年鉴2021[M/OL]. 北京: 中国统计出版社.(2021-10-27)[2022-02-27]. http://stats.hainan.gov.cn/tjj/tjsu/ndsj/2021/index.html. [3] 严正.海南省水资源配置研究[J]. 中国农村水利水电,2008(3):32-35. [4] 向晓明.海南岛水资源基本特点及影响可持续发展的主要因素初探[J]. 海南师范大学学报(自然科学版),2007,20(1):80-83.XIANG X M. An analysis of main characteristics and factors on the sustainable development of water resources in Hainan[J]. Journal of Hainan Normal University (Natural Science),2007,20(1):80-83. [5] HU B Q, CUI R Y, LI J, et al. Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island)[J]. Marine Pollution Bulletin,2013,76(1/2):400-405. [6] HUANG D K, DU J Z, ZHANG J. Particle dynamics of 7Be, 210Pb and the implications of sedimentation of heavy metals in the Wenjiao/Wenchang and Wanquan River Estuaries, Hainan, China[J]. Estuarine, Coastal and Shelf Science,2011,93(4):431-437. doi: 10.1016/j.ecss.2011.05.013 [7] ZHANG P, RUAN H M, DAI P D, et al. Spatiotemporal river flux and composition of nutrients affecting adjacent coastal water quality in Hainan Island, China[J]. Journal of Hydrology,2020,591:125293. doi: 10.1016/j.jhydrol.2020.125293 [8] 常春荣.海南省三大河流及地下水硝酸盐含量调查分析[J]. 华南热带农业大学学报,2006,12(3):20-24.CHANG C R. Investigation of nitrate content in major rives and underground water in Hainan Province[J]. Journal of South China University of Tropical Agriculture,2006,12(3):20-24. [9] 陈晓璐, 林建海, 梁华玲.基于水文学法的海南省三大江生态需水量研究[J]. 人民珠江,2020,41(2):28-35.CHEN X L, LIN J H, LIANG H L. Research on ecological water requirement of three largest rivers in Hainan Province based on hydrologic method[J]. Pearl River,2020,41(2):28-35. [10] 杨志宏, 贾建军, 王欣凯, 等.近50年海南三大河入海水沙通量特征及变化[J]. 海洋通报,2013,32(1):92-99. doi: 10.11840/j.issn.1001-6392.2013.01.014YANG Z H, JIA J J, WANG X K, et al. Characteristics and variations of water and sediment fluxes into the sea of the top three rivers of Hainan in recent 50 years[J]. Marine Science Bulletin,2013,32(1):92-99. doi: 10.11840/j.issn.1001-6392.2013.01.014 [11] 宋玉梅. 基于模拟条件的海南主要流域农田面源污染特征研究[D]. 海口: 海南大学, 2011. [12] 陈善荣, 何立环, 张凤英, 等.2016—2019年长江流域水质时空分布特征[J]. 环境科学研究,2020,33(5):1100-1108. doi: 10.13198/j.issn.1001-6929.2020.04.03CHEN S R, HE L H, ZHANG F Y, et al. Spatiotemporal characteristics of surface water quality of the Yangtze River Basin during 2016-2019[J]. Research of Environmental Sciences,2020,33(5):1100-1108. doi: 10.13198/j.issn.1001-6929.2020.04.03 [13] 郭彤, 张永祥, 贾瑞涛.多重水质评价方法在地下水水质评价中的对比研究: 以北京市朝阳区为例[J]. 环境工程技术学报,2022,12(6):2020-2026. doi: 10.12153/j.issn.1674-991X.20210500GUO T, ZHANG Y X, JIA R T. Comparative study of multiple water quality assessment methods in groundwater quality assessment: taking Chaoyang District of Beijing as an example[J]. Journal of Environmental Engineering Technology,2022,12(6):2020-2026. doi: 10.12153/j.issn.1674-991X.20210500 [14] MEKURIA D M, KASSEGNE A B, ASFAW S L. Assessing pollution profiles along Little Akaki River receiving municipal and industrial wastewaters, Central Ethiopia: implications for environmental and public health safety[J]. Heliyon,2021,7(7):e07526. doi: 10.1016/j.heliyon.2021.e07526 [15] HOSSAIN M, PATRA P K. Water pollution index: a new integrated approach to rank water quality[J]. Ecological Indicators,2020,117:106668. doi: 10.1016/j.ecolind.2020.106668 [16] 徐发凯, 何丽, 王一帆, 等.2010—2019年黄河干流兰州和白银段水质时空变化特征[J]. 水资源保护,2021,37(4):44-50. doi: 10.3880/j.issn.1004-6933.2021.04.007XU F K, HE L, WANG Y F, et al. Temporal and spatial variation characteristics of water quality in Lanzhou and Baiyin section of the Yellow River mainstream from 2010 to 2019[J]. Water Resources Protection,2021,37(4):44-50. doi: 10.3880/j.issn.1004-6933.2021.04.007 [17] 曾凤连, 杨刚, 王萍, 等.淮河干流水环境质量时空变化特征及污染趋势分析[J]. 水生态学杂志,2021,42(5):86-94. doi: 10.15928/j.1674-3075.202106290209ZENG F L, YANG G, WANG P, et al. Temporal and spatial variation of water quality and pollution trend of Huaihe River[J]. Journal of Hydroecology,2021,42(5):86-94. doi: 10.15928/j.1674-3075.202106290209 [18] 唐琦, 刘兵, 王璞, 等.改进WQI在川中丘陵地区典型流域水质评价中的应用: 以琼江流域上游段为例[J]. 环境工程技术学报,2022,12(2):615-623. doi: 10.12153/j.issn.1674-991X.20210140TANG Q, LIU B, WANG P, et al. Application of improved WQI model in water quality assessment of typical watershed in the hilly area of central Sichuan Province: a case study in the upper reaches of Qiongjiang River Basin[J]. Journal of Environmental Engineering Technology,2022,12(2):615-623. doi: 10.12153/j.issn.1674-991X.20210140 [19] 毕业亮, 王华彩, 夏兵, 等.雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学,2022,43(2):782-794.BI Y L, WANG H C, XIA B, et al. Pollution characterization and comprehensive water quality assessment of rain-source river: a case study of the Longgang River in Shenzhen[J]. Environmental Science,2022,43(2):782-794. [20] 刘芫, 刘蓬, 刘琳, 等.黄石市大冶湖水质变化趋势及成因分析[J]. 环境工程技术学报,2022,12(2):553-559. doi: 10.12153/j.issn.1674-991X.20210680LIU Y, LIU P, LIU L, et al. Variation trend and cause analysis of water quality in Daye Lake of Huangshi City[J]. Journal of Environmental Engineering Technology,2022,12(2):553-559. doi: 10.12153/j.issn.1674-991X.20210680 [21] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 7版. 北京: 科学出版社, 2014: 140-146, 237-241. [22] ZHANG F, XUE H F, MA X M, et al. Grey prediction model for the chemical oxygen demand emissions in industrial waste water: an empirical analysis of China[J]. Procedia Engineering,2017,174:827-834. doi: 10.1016/j.proeng.2017.01.229 [23] ZHENG Y N, ZHENG X L, GAO Z W, et al. Prediction of seawater quality in rigs-to-reefs area based on grey systems theory[J]. Procedia Environmental Sciences,2013,18:236-242. doi: 10.1016/j.proenv.2013.04.030 [24] 周祖光.海南岛河流水体纳污分析[J]. 资源科学,2006,28(6):141-145. doi: 10.3321/j.issn:1007-7588.2006.06.021ZHOU Z G. Analyzing pollutant taking capacity of rivers in Hainan[J]. Resources Science,2006,28(6):141-145. doi: 10.3321/j.issn:1007-7588.2006.06.021 [25] 符国基.国家生态文明试验区(海南)比较优势与建议[J]. 生态经济,2020,36(7):216-220.FU G J. Comparative advantages of national ecological civilization pilot zone (Hainan) and proposals[J]. Ecological Economy,2020,36(7):216-220. ◇