Water quality analysis and groundwater health risk assessment of acid mine inflow from abandoned coal mines around Guangyuan City
-
摘要:
为揭示酸性矿山废水对其周边地下水和地表水水质构成的影响,以及地下水中金属元素对人体健康的潜在危害,以广元市周边废弃煤矿为研究区域,对区域内23个地下水样品和39个地表水样品中的常规指标和金属元素进行测定和分析。基于内梅罗综合指数法和污染指数法分析研究区地下水及地表水环境质量,应用健康风险评价模型评价研究区地下水健康风险。结果表明:研究区范围内地表水中的TDS(总溶解性固体物质)、SO4 2−、Ca2+和Mg2+浓度较高,其中TDS和SO4 2−平均浓度最高,超过GB 3838—2002《地表水环境质量标准》Ⅲ类限值。研究区范围内地下水水质较差,SO4 2−、TDS、Mg2+、Ca2+浓度较高,其中SO4 2−以及TDS的平均浓度最高;地下水的金属元素平均浓度的大小顺序为TFe(Fe2+、Fe3+总和)>Al>Pb>Zn>Mn>Cu>TCr(Cr3+、Cr6+总和)>Cd>As>Hg,有9种金属元素超过GB/T 14848—2017《地下水质量标准》Ⅲ类限值;从地下水的金属元素浓度空间分布来看,东部地区高于西部地区,旺苍县地下水水质受重金属污染最为严重。内梅罗指数评价结果显示,大部分地表水评价结果为良好或极好,少部分为较差或极差,这与污染指数评价结果具有较好的一致性,主要由矿井涌水排放导致。健康风险评价结果表明,研究区地下水健康总风险较高,主要来源于致癌性元素As、Cd和Cr,致癌风险均高于最大限值(10−4),非致癌总风险均大于可接受的健康风险最大限值(1),表明地下水具有较为严重的非致癌健康风险;研究区地下水经口暴露途径出现的潜在非致癌风险超过皮肤暴露途径,且成年人的潜在非致癌风险高于儿童。研究区范围内地下水水质存在较大健康风险,该类水体不宜饮用,在日后使用过程中应重点防控重金属Al、Pb、Zn和Fe引致的风险。
Abstract:The abandoned coal mines around Guangyuan City were taken as the study area to reveal the impact of acid mine wastewater on the water quality composition of its surrounding groundwater and surface water, as well as the potential hazard of metal element in the groundwater to human health, The conventional index and metal elements in 23 groundwater samples and 39 surface water samples in the target region were determined and analyzed. The environmental quality of groundwater and surface water in the study area was analyzed on the basis of the Nemero comprehensive index method and the pollution index method, and the health risk assessment model was applied to evaluate the health risk of groundwater in the study area. The research showed that the groundwater within the study area contained a high level of total dissolved solids (TDS), SO4 2−, Ca2+ and Mg2+ with the highest average mass concentration of TDS and SO4 2−, which exceeded Class Ⅲ limits in Environmental Quality Standards for Surface Water (GB 3838-2002). In addition, high levels of TDS, SO4 2−, Ca2+ and Mg2+ caused poor groundwater quality. Among the above elements, SO4 2−and TDS had the highest average mass concentrations. The average concentrations of heavy metals in the studied groundwater were in the following order: TFe (sum of Fe2+and Fe3+) > Al3+>Pb2+>Zn2+>Mn2+>Cu2+>TCr (sum of Cr3+ and Cr6+)>Cd2+>As>Hg, with nine heavy metals exceeding Class Ⅲ limits in Standard for Groundwater Quality (GB/T 14848-2017). According to the results, the eastern region had more metal element in its groundwater than the west; and the groundwater quality in Wangcang County was the most seriously polluted by heavy metals. According to the Nemero index evaluation, most surface water evaluation results were good or excellent, and a few were poor or very poor. This was in good agreement with the pollution index evaluation results, which indicated that the pollution was mainly caused by the discharge of mine water inflow. According to the health risk evaluation results, the groundwater in the study area had a high health risk. The main carcinogenic elements were As, Cd and Cr. The carcinogenic risk of these three elements was all above the maximum risk limit of 10−4. Meanwhile, the total non-carcinogenic risk of the groundwater exceeded 1 (the acceptable health risk limit), indicating a serious risk of non-carcinogenic disease. The potential non-carcinogenic risk from oral exposure to groundwater in the survey area exceeded that of skin exposure, and the adults bore higher potential non-carcinogenic risk than minors. The results of this study indicated that the quality of groundwater within the study area posed a great threat to people’s health, and the groundwater in the study area was not suitable for drinking. As for the future use of the water bodies, more significance should be attached to the prevention and control of risk from the heavy metals Al, Pb, Zn and Fe.
-
表 1 研究区水质常规指标统计
Table 1. Statistics of conventional water quality indicators in the study area
水样类型 统计量 pH1) TDS SO4 2− Cl− F− NO3 − K+ Na+ Ca2+ Mg2+ 地下水 平均值/(mg/L) 5.48 3 204.48 1 655.15 5.02 2.72 1.84 6.27 19.31 246.43 67.09 最大值/(mg/L) 8.06 16 347.00 8 980.00 61.80 24.20 7.99 20.20 165.00 475.00 243.00 最小值/(mg/L) 2.49 299.00 34.20 1.70 0.11 0.01 0.64 2.41 64.00 7.00 中值/(mg/L) 6.28 985.00 484.00 2.36 0.53 1.33 3.76 9.75 181.00 30.00 标准差/(mg/L) 2.12 4 485.41 2 315.81 12.39 5.59 2.09 5.95 33.55 141.38 69.83 变异系数% 0.39 1.40 1.40 2.47 2.06 1.13 0.95 1.74 0.57 1.04 超标率/% 0.52 0.48 0.83 0.00 0.30 0.00 — 0.00 — — 标准限值/(mg/L) 6.5~8.5 1 000.00 250.00 250.00 1.00 20.00 — 200.00 — — 地表水 平均值/(mg/L) 7.26 670.87 329.89 2.78 0.28 2.99 2.22 8.57 102.44 29.03 最大值/(mg/L) 8.42 7 091.00 3 180.00 4.54 2.40 4.85 20.10 80.00 525.00 309.00 最小值/(mg/L) 2.86 105.00 11.60 1.69 0.04 0.01 0.50 2.05 23.00 6.00 中值/(mg/L) 7.98 358.00 102.00 2.85 0.18 3.12 1.35 5.34 72.00 16.00 标准差/(mg/L) 1.39 1161.21 639.43 0.69 0.39 0.95 3.62 14.83 96.22 51.76 变异系数% 0.19 1.73 1.94 0.25 1.37 0.32 1.63 1.73 0.94 1.78 超标率/% 0.13 0.10 0.28 0.00 0.03 0.00 — — — — 标准限值/(mg/L) 6~9 1000.00 250.00 250.00 1.00 10.00 — — — — 1)无量纲。 表 2 研究区地下水金属元素浓度统计
Table 2. Mass concentration statistics of metal elements in groundwater in the study area
金属元素 平均值/(mg/L) 最大值/(mg/L) 最小值/(mg/L) 中值/(mg/L) 标准差/(mg/L) 变异系数/% 超标率/% 标准限值/(mg/L) Fe 303.24 2 235.00 0.01 31.4 609.12 2.01 0.78 0.3 Mn 1.72 7.80 0.01 0.61 2.52 1.47 0.65 0.1 Al 66.97 545.00 0.08 1.16 147.04 2.20 0.78 0.2 Cu 0.29 3.06 0.01 0.01 0.87 3.04 0.09 1 Zn 2.98 19.00 0.01 0.32 5.52 1.85 0.35 1 Pb 4.50 58.30 0.12 0.70 12.74 2.83 1 0.01 Cd 194.53 1 378.00 0.01 2.46 447.02 2.30 0.39 5 Cr 0.19 1.29 0.01 0.01 0.40 2.12 0.26 0.05 As 3.67 56.20 0.10 0.10 11.69 3.19 0.04 10 Hg 0.12 0.36 0.01 0.11 0.10 0.81 0 1 注:Cd、As和Hg的浓度单位为μg/L。 表 3 地下水金属元素与其他组分之间的相关系数
Table 3. Correlation matrix between metals and other components in groundwater
金属元素 pH TDS 硬度 Na+ SO4 2− F − NO3 − Cl− Fe −0.940** 0.842** 0.779** 0.480* 0.844** 0.846** −0.526** −0.241 Mn −0.920** 0.844** 0.774** 0.411 0.842** 0.712** −0.548** −0.198 Al −0.940** 0.883** 0.811** 0.408 0.893** 0.819** −0.544** −0.203 Cu −0.638** 0.688** 0.602** 0.443* 0.673** 0.727** −0.170 −0.029 Zn −0.929** 0.850** 0.778** 0.449* 0.858** 0.840** −0.507* −0.289 Pb −0.411 0.425* 0.394 0.413 0.396 0.260 −0.239 0.028 Cd −0.857** 0.795** 0.731** 0.571** 0.785** 0.653** −0.506* −0.225 Cr −0.739** 0.774** 0.703** 0.448* 0.764** 0.782** −0.326 −0.045 As −0.774** 0.851** 0.894** 0.538** 0.869** 0.694** −0.626** −0.389 Hg −0.449* 0.492* 0.437* 0.420* 0.448* 0.479* −0.22 0.126 注:**表示在置信度(双测)为0.01时相关性显著,*表示在置信度(双测)为0.05时相关性显著。全文同。 表 4 地下水金属元素之间的相关系数
Table 4. Correlation matrix of metals in groundwater
金属元素 Fe Mn Al Cu Zn Pb Cd Cr As Hg Fe 1 0.901** 0.929** 0.696** 0.949** 0.362 0.835** 0.769** 0.745** 0.409 Mn 1 0.933** 0.655** 0.901** 0.380 0.814** 0.666** 0.665** 0.592** Al 1 0.711** 0.947** 0.375 0.813** 0.814** 0.708** 0.491* Cu 1 0.692** 0.200 0.606** 0.779** 0.551** 0.626** Zn 1 0.310 0.834** 0.786** 0.741** 0.456* Pb 1 0.585** 0.398 0.370 0.183 Cd 1 0.707** 0.761** 0.322 Cr 1 0.690** 0.392 As 1 0.289 Hg 1 表 5 研究区水质质量评价结果
Table 5. Evaluation results of water quality in the study area
评价方法 地下水 地表水 质量级别 数量/个 占比/% 质量级别 数量/个 占比/% 内梅罗指数法 极好 2 8.70 极好 0 0 良好 1 4.35 良好 7 17.95 较好 1 4.35 较好 2 5.13 较差 1 4.35 较差 25 64.10 极差 18 78.26 极差 5 12.82 污染指数法 Ⅰ 0 0 Ⅰ 8 20.51 Ⅱ 0 0 Ⅱ 0 0 Ⅲ 0 0 Ⅲ 3 7.69 Ⅳ 0 0 Ⅳ 26 66.67 Ⅴ 23 100 Ⅴ 2 5.13 表 6 非致癌物质的饮水途径和皮肤暴露途径的暴露剂量
Table 6. Exposure doses of non-carcinogens through drinking water and skin exposure
mg/(kg·d) 元素 CDIoral CDIder CDItotal 成年人 儿童 成年人 儿童 成年人 儿童 Fe 4.94 1.16 3.98×10−5 8.42×10−6 4.94 1.16 Mn 2.80×10−2 6.58×10−3 2.26×10−7 4.78×10−8 2.80×10−2 6.58×10−3 Al 1.09 2.56×10−1 8.80×10−6 1.86×10−6 1.09 2.56×10−1 Cu 4.66×10−3 1.10×10−3 3.76×10−8 7.94×10−9 4.66×10−3 1.10×10−3 Zn 4.85×10−2 1.14×10−2 3.91×10−7 8.26×10−8 4.85×10−2 1.14×10−2 Hg 1.95×10−6 4.58×10−7 1.57×10−11 3.32×10−12 1.95×10−6 4.58×10−7 Pb 7.34×10−2 1.72×10−2 5.91×10−7 1.25×10−7 7.34×10−2 1.72×10−2 表 7 饮水和皮肤暴露途径下的人群健康风险
Table 7. Health risk caused by carcinogens and non-carcinogens through the drinking water and dermal exposure pathway
类别 元素 饮水暴露途径 皮肤暴露途径 致癌风险值(ILCR)
或非致癌风险熵(HQ)非致癌风险指数
(HI)成年人 儿童 成年人 儿童 成年人 儿童 成年人 儿童 致癌风险 As 8.97×10−4 2.11×10−4 1.76×10−9 3.73×10−10 8.97×10−4 2.11×10−4 — — Cd 1.92×10−2 4.54×10−3 9.71×10−9 2.05×10−9 1.92×10−2 4.54×10−3 — — Cr 1.17×10−1 2.92×10−2 1.22×10−8 2.58×10−9 1.17×10−1 2.92×10−2 — — 非致癌风险 Mn 1.17 2.74×10−1 2.82×10−4 5.97×10−5 1.17 2.74×10−1 Fe 1.65×10 3.87 8.85×10−4 1.87×10−4 1.65×10 3.87 Al 5.46×10 1.28×10 1.63×10−3 3.44×10−4 5.46×10 1.28×10 Cu 1.17×10−1 2.74×10−2 3.13×10−6 6.62×10−7 1.17×10−1 2.74×10−2 93.6 21.9 Zn 1.62×10−1 3.80×10−2 6.51×10−6 1.38×10−6 1.62×10−1 3.80×10−2 Hg 1.95×10−2 4.58×10−3 5.24×10−8 1.11×10−8 1.95×10−2 4.58×10−3 Pb 2.10×10 4.92 1.13×10−3 2.38×10−4 2.10×10 4.92 -
[1] 郑凯, 谭志钊, 陈佩芸, 等.某铁龙和槽对坑尾矿区酸性矿山废水中重金属污染健康风险评价[J]. 公共卫生与预防医学,2015,26(4):4-6.ZHENG K, TAN Z Z, CHEN P Y, et al. Preliminary evaluation on health risk of heavy metal contamination of Acid Mine Drainage from Tielong and Caoduikeng Tailings, Dabaoshan Mine[J]. Journal of Public Health and Preventive Medicine,2015,26(4):4-6. [2] 李培良, 李国政, 刘冠峰.某尾矿库渗漏水对地下水的影响分析[J]. 黄金,2005,26(12):45-47. doi: 10.3969/j.issn.1001-1277.2005.12.013LI P L, LI G Z, LIU G F. The influence of seepage flow on groundwater in certain tailing pool[J]. Gold,2005,26(12):45-47. doi: 10.3969/j.issn.1001-1277.2005.12.013 [3] 杨云杰. 个旧矿区地下水环境质量评价及尾矿库渗漏分析[D]. 昆明: 昆明理工大学, 2018. [4] 李鸣晓, 安达, 杨昱, 等.白洋淀淀中村非规范垃圾堆放地下水污染健康风险评价[J]. 环境工程技术学报,2012,2(5):449-455.LI M X, AN D, YANG Y, et al. Groundwater pollution health risk assessment at non-formal solid waste dumping sites of a village in Baiyangdian Lake[J]. Journal of Environmental Engineering Technology,2012,2(5):449-455. [5] 张坤锋, 昌盛, 赵少延, 等.克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报,2021,11(6):1083-1091.ZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology,2021,11(6):1083-1091. [6] 洪慧, 李娟, 汪洋, 等.基于统计学方法的地下水水质评价与成因分析: 以齐齐哈尔市为例[J]. 环境工程技术学报,2019,9(4):431-439.HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and causes analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology,2019,9(4):431-439. [7] 韩奉平, 黄磊.安康某铅锌矿开采对地下水环境影响评价分析[J]. 地下水,2017,39(6):40-43. doi: 10.3969/j.issn.1004-1184.2017.06.012HAN F P, HUANG L. Analysis of groundwater environmental impact assessment of a lead zinc mine in Ankang[J]. Ground Water,2017,39(6):40-43. doi: 10.3969/j.issn.1004-1184.2017.06.012 [8] 陶知翔, 成先雄, 赵美珍.矿山环境问题与防治对策[J]. 金属矿山,2008(1):103-106.TAO Z X, CHENG X X, ZHAO M Z. Mine environment problems and control measures[J]. Metal Mine,2008(1):103-106. [9] WONGSASULUK P, CHOTPANTARAT S, SIRIWONG W, et al. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani Province, Thailand[J]. Environmental Geochemistry and Health,2014,36(1):169-182. doi: 10.1007/s10653-013-9537-8 [10] 杨俊, 吕府红, 宋永伟, 等.典型重金属污染地区蔬菜中重金属含量及健康风险[J]. 环境污染与防治,2017,39(9):952-956. doi: 10.15985/j.cnki.1001-3865.2017.09.005YANG J, LYU F H, SONG Y W, et al. Vegetable heavy metal content and health risks in the typical heavy metal contaminated area[J]. Environmental Pollution & Control,2017,39(9):952-956. doi: 10.15985/j.cnki.1001-3865.2017.09.005 [11] 徐承香, 晏翰林, 张思强, 等.贵州荔波喀斯特洞穴水重金属含量及健康风险评价[J]. 环境科学与技术,2020(2):204-212.XU C X, YAN H L, ZHANG S Q, et al. Heavy metal content and health risk assessment in water of Karst cave in libo, Guizhou[J]. Environmental Science and Technology,2020(2):204-212. [12] MUHAMMAD S, SHAH M T, KHAN S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan[J]. Microchemical Journal,2011,98(2):334-343. doi: 10.1016/j.microc.2011.03.003 [13] WANG X L, LI Y. Distribution and fractionation of heavy metals in long-term and short-term contaminated sediments[J]. Environmental Engineering Science,2012,29(7):617-622. doi: 10.1089/ees.2011.0122 [14] 仇茂龙, 刘玲花, 邹晓雯, 等.国内外水源地水质评价标准与评价方法的比较[J]. 中国水利水电科学研究院学报,2013,11(3):176-182. doi: 10.3969/j.issn.1672-3031.2013.03.003QIU M L, LIU L H, ZOU X W, et al. Comparison of source water quality standards and evaluation methods between China and some developed countries[J]. Journal of China Institute of Water Resources and Hydropower Research,2013,11(3):176-182. doi: 10.3969/j.issn.1672-3031.2013.03.003 [15] 郇环, 廉新颖, 杨昱, 等.基于级别差法的地下水水质评价方法筛选技术研究[J]. 环境科学研究,2020,33(2):402-410. doi: 10.13198/j.issn.1001-6929.2019.06.19HUAN H, LIAN X. Y, YANG Y, et al. Groundwater quality evaluation method based on level difference method of screening technology research[J]. Journal of environmental science research,2020,33(2):402-410. doi: 10.13198/j.issn.1001-6929.2019.06.19 [16] 程继雄, 程胜高, 张炜.地下水质量评价常用方法的对比分析[J]. 安全与环境工程,2008,15(2):23-25. doi: 10.3969/j.issn.1671-1556.2008.02.006CHENG J X, CHENG S G, ZHANG W. Comparison and analysis on common methods of groundwater quality assessment[J]. Safety and Environmental Engineering,2008,15(2):23-25. doi: 10.3969/j.issn.1671-1556.2008.02.006 [17] 尚佰晓, 吕子楠, 李杰年, 等.基于模糊综合评价法与单因子指数评价法的水质评价[J]. 中国环境管理干部学院学报,2013,23(5):1-4.SHANG B X, LV Z N, LI J N, et al. Application of fuzzy mathematics and single factor index in water quality evaluation[J]. Journal of Environmental Management College of China,2013,23(5):1-4. [18] 颜睿. 铜陵典型金属矿区地下水污染风险性评价[D]. 北京: 中国地质大学(北京), 2020. [19] 黄尤优, 曾燏, 刘守江, 等.大渡河老鹰岩河段的水生生物群落结构及水质评价[J]. 环境科学,2016,37(1):132-140. doi: 10.13227/j.hjkx.2016.01.018HUANG Y Y, ZENG Y, LIU S J, et al. Community structure of aquatic community and evaluation of water quality in laoyingyan section of Dadu River[J]. Environmental Science,2016,37(1):132-140. doi: 10.13227/j.hjkx.2016.01.018 [20] 沈仕沐.广东某铌钽矿山对周边地下水环境影响评价[J]. 西部资源,2017(5):125-126. doi: 10.3969/j.issn.1672-562X.2017.05.051SHEN S M. Impact assessment of a niobium and tantalum mine on surrounding groundwater environment in Guangdong Province[J]. Western Resources,2017(5):125-126. doi: 10.3969/j.issn.1672-562X.2017.05.051 [21] 张晓叶, 张永祥, 任仲宇, 等.不同地下水水质评价方法的比较及实例应用[J]. 水资源与水工程学报,2014,25(2):98-101.ZHANG X Y, ZHANG Y X, REN Z Y, et al. Comparison and practical example of assessment method in different groundwater qualities[J]. Journal of Water Resources and Water Engineering,2014,25(2):98-101. [22] 刘中培, 蔡庆峰, 窦明, 等.人民胜利渠灌区地下水水质评价[J]. 人民珠江,2020,41(2):36-40.LIU Z P, CAI Q F, DOU M, et al. Evaluation of groundwater quality in People's victory canal irrigation area[J]. Pearl River,2020,41(2):36-40. [23] 李良忠, 张丽娟, 胡国成, 等.西南某矿区家庭灰尘中重金属的暴露及其健康风险评价[J]. 生态毒理学报,2017,12(5):235-242. doi: 10.7524/AJE.1673-5897.20161029001LI L Z, ZHANG L J, HU G C, et al. The exposure and health risk assessment of the heavy metals in house dust from mineral areas, southwest of China[J]. Asian Journal of Ecotoxicology,2017,12(5):235-242. doi: 10.7524/AJE.1673-5897.20161029001 [24] 马海珍. 白洋淀流域平原区地下水环境健康风险评价及预测[D]. 西安: 长安大学, 2021. [25] United States Environmental Protection Agency. Electronic code of federal regulations, title 40-protection of environment, part 423d steam electric power generating point source category. appendix A to Part 423e 126, Priority Pollutants[R]. Washington DC: US EPA, 2013. [26] 李红叶, 时晓, 曹文翰, 等.西南某矿山尾矿库地下水水质综合评价[J]. 甘肃水利水电技术,2019,55(1):13-16. doi: 10.19645/j.issn2095-0144.2019.01.004 [27] 周文武, 陈冠益, 穷达卓玛, 等.拉萨市垃圾填埋场地下水水质的居民健康风险评价[J]. 环境化学,2020,39(6):1513-1522. doi: 10.7524/j.issn.0254-6108.2019041101ZHOU W W, CHEN G Y, QIONG D, et al. Health risk assessment of groundwater quality in Lhasa landfill[J]. Environmental Chemistry,2020,39(6):1513-1522. doi: 10.7524/j.issn.0254-6108.2019041101 [28] 张秋秋, 潘申龄, 刘伟, 等.我国重点城市饮用水中砷健康累积风险评价[J]. 环境科学,2017,38(5):1835-1841. doi: 10.13227/j.hjkx.201608151ZHANG Q Q, PAN S L, LIU W, et al. Accumulated health risk assessment of arsenic in drinking water of major cities of China[J]. Environmental Science,2017,38(5):1835-1841. doi: 10.13227/j.hjkx.201608151 [29] 艾提业古丽·热西提, 麦麦提吐尔逊·艾则孜, 王维维, 等.博斯腾湖流域地下水重金属污染的人体健康风险评估[J]. 生态毒理学报,2019,14(2):251-259. doi: 10.7524/AJE.1673-5897.20180718001ATIYAGUL R, MAMATTURSUN E, WANG W W, et al. The human health risk assessment of heavy metal pollution of groundwater in Bosten Lake Basin[J]. Asian Journal of Ecotoxicology,2019,14(2):251-259. doi: 10.7524/AJE.1673-5897.20180718001 [30] GIRI S, SINGH A K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India[J]. Journal of Hazardous Materials,2014,265:305-314. doi: 10.1016/j.jhazmat.2013.09.067 [31] United States Environmental Protection Agency. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual Part A, vol. 1 (EPA/540/1-89/002)[R]. Washington DC: Office of Emergency and Remedial Response, 1989: 1-100. [32] 陈仁祥, 高杨, 宋勇, 等.龙南足洞稀土矿区地下水水质特征及健康风险评价[J]. 有色金属(矿山部分),2021,73(3):111-118.CHEN R X, GAO Y, SONG Y, et al. Groundwater quality characteristics and health risk assessment in Longnan Zudong rare earth mine[J]. Nonferrous Metals (Mining Section),2021,73(3):111-118. [33] 刘昭, 周宏, 刘伟, 等.清江流域地下水重金属含量特征及健康风险初步评价[J]. 环境工程,2021,39(5):196-203.LIU Z, ZHOU H, LIU W, et al. Heavy metal concentration properties analysis and primary health risk assessment in groundwater in the Qingjiang River[J]. Environmental Engineering,2021,39(5):196-203. [34] US EPA. Regional Screening Levels (RSL) Tables[S]. Washington DC: United States Environmental Protection Agency, 2011. [35] 王丹璐, 王剑锋, 李政蕾, 等. 中国人群暴露参数研究[C]//中国环境科学学会环境医学与健康分会. 2018. [36] 白丽荣, 龚航远, 徐敏, 等.太原市某垃圾填埋场渗滤液及周边环境重金属污染及健康风险评估[J]. 生态毒理学报,2021,16(4):313-322.BAI L R, GONG H Y, XU M, et al. Heavy metal pollution and health risk assessment of a landfill site in Taiyuan City[J]. Asian Journal of Ecotoxicology,2021,16(4):313-322. [37] 张春艳, 高柏, 郭亚丹, 等.鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报,2016,11(2):524-530.ZHANG C Y, GAO B, GUO Y D, et al. Pollution characteristic and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology,2016,11(2):524-530. [38] 段小丽. 中国人群暴露参数手册(成人卷): 概要[M]. 北京: 中国环境出版社, 2014. [39] 段小丽. 中国人群暴露参数手册(儿童卷): 概要[M]. 北京: 中国环境出版社, 2016: 170-202. [40] 杨丽芝, 朱恒华, 刘治政, 等.淄博大武水源地地下水健康风险评价[J]. 干旱区资源与环境,2021,35(12):106-113.YANG L Z, ZHU H H, LIU Z Z, et al. Health risk assessment of groundwater in the Dawu water source area, Zibo city[J]. Journal of Arid Land Resources and Environment,2021,35(12):106-113. [41] 麦麦提吐尔逊·艾则孜, 艾尼瓦尔·买买提, 阿吉古丽·马木提, 等.新疆焉耆盆地农田土壤重金属污染及健康风险评价[J]. 生态毒理学报,2018,13(2):171-181. doi: 10.7524/AJE.1673-5897.20170522001MAMATTURSUN E, ANWAR M, AJIGUL M, et al. Assessment of heavy metals pollution and its health risk of farmland soils of Yanqi Basin in Xinjiang Province[J]. Asian Journal of Ecotoxicology,2018,13(2):171-181. doi: 10.7524/AJE.1673-5897.20170522001 [42] ZHANG Y, LI F D, OUYANG Z, el al. Distribution and health risk assessment of heavy metals of groundwaters in the irrigation district of the lower reaches of Yellow River[J]. Environment of Science,2013,34:121-128. [43] 吕占禄, 张晗, 张金良, 等.沟塘水及其周边浅层地下水中重金属污染特征与健康风险评价[J]. 环境工程技术学报,2020,10(6):971-978.LÜ Z L, ZHANG H, ZHANG J L, et al. Pollution characteristics and health risk assessment of heavy metals in gully pond water and its surrounding shallow groundwater[J]. Journal of Environmental Engineering Technology,2020,10(6):971-978. [44] 王月, 安达, 席北斗, 等.基于三角随机模拟的生活垃圾填埋场地下水环境健康风险评价模型[J]. 环境工程技术学报,2016,6(1):49-56. doi: 10.3969/j.issn.1674-991X.2016.01.008WANG Y, AN D, XI B D, et al. Assessment model of landfill sites groundwater environmental health risk based on stochastic simulation-triangular fuzzy numbers[J]. Journal of Environmental Engineering Technology,2016,6(1):49-56. ⊕ doi: 10.3969/j.issn.1674-991X.2016.01.008