Groundwater quality characteristics and pollution causes in typical hilly areas of North China: the case of Longan District, Anyang City, Henan Province
-
摘要:
为探明华北典型丘陵地区——安阳市龙安区的地下水水质状况,共检测了龙安区内127个监测井的24项水质指标,开展区域地下水水质特征及污染成因研究;在水化学统计和水质评价的基础上,应用反距离权重空间插值法对污染物进行空间分布特征解析,并通过主成分分析法识别污染源。结果表明:龙安区浅层地下水化学类型多为HCO3-Ca型,区域内93.0%的地下水样品中NO3 −浓度超过GB/T 14848—2017《地下水质量标准》中Ⅲ类标准限值,最大超标倍数为47.1倍。单因子污染指数评价结果显示,研究区地下水样品中NO3 −污染指数最大值为48.10,其中27%的样品处于较重污染状态,19%处于严重至极重污染状态;SO4 2−处于中度污染状态,Cl−、NH4 +、F−处于轻度污染状态。内梅罗综合污染指数评价结果显示,研究区地下水综合污染指数为0.01~34.69,地下水水质整体处于良好水平,但有4%的样品处于极差状态,主要分布于研究区中部。NO3 −、NH4 +、SO4 2−、Cl−浓度高值区主要分布于区域中部,且呈现中部高、东西低的分布特征;F−浓度高值区分布于地下水滞留区,且呈现西低东高的分布特征。污染成因分析结果表明,研究区地下水水质状况主要受区域水文地质条件、地下水地球化学特征和农业面源污染影响。
Abstract:In order to ascertain the groundwater quality in Longan District, Anyang City, a typical hilly area in North China, the data of 24 water quality indicators from 127 monitored well samples were obtained, and the groundwater quality characteristics and pollution causes were analyzed. On the basis of hydrochemical statistics and water quality evaluation, the inverse distance weighting (IDW) spatial interpolation method was used to analyze the spatial distribution of different pollutants, and the principal component analysis was used to identify pollution sources. The results showed that HCO3-Ca type was the typical chemical type of shallow groundwater in Longan District. The NO3 − concentration at 93.0% of samples exceeded the class Ⅲ standard defined in Standard for Groundwater Quantity (GB/T 14848-2017), whose maximum exceeding multiples was 47.1. The single factor evaluation showed that the NO3 − pollution index of groundwater monitoring well samples in Longan District reached a maximum value of 48.10, among which 27% were heavy pollution level, and 19% were serious to extremely heavy pollution levels. The concentration of SO4 2− reached moderate pollution level, while Cl−, NH4 +, and F− reached mild pollution level. Nemero comprehensive evaluation results showed that the comprehensive groundwater pollution index was between 0.01 and 34.69, and the groundwater quality was generally at good condition. Among them, 4% of the monitored well samples were at extremely poor pollution level, which were mainly distributed in the middle of Longan District. The highest concentrations of NO3 −, NH4 +, SO4 2−, Cl− were mainly located in the middle, presenting the spatial distribution characteristics of higher concentration in the middle than that in the east and west. The concentration of F− was higher in the east and lower in the west, and the highest was mainly distributed in the groundwater retention area. Source analysis showed that the groundwater quality was mainly affected by regional geohydrologic conditions, groundwater geochemical characteristics, and agricultural non-point source pollution.
-
表 1 单因子污染指数法分级标准
Table 1. Classification standard of single factor pollution index method
Pki 污染等级 污染程度 ≤0 Ⅰ 未污染 0~1 Ⅱ 轻度污染 1~3 Ⅲ 中度污染 3~6 Ⅳ 较重污染 6~10 Ⅴ 严重污染 >10 Ⅵ 极重污染 表 2 内梅罗综合污染指数法分级标准
Table 2. Classification criteria for Nemerow composite pollution index method
F 污染等级 污染程度 ≤0.80 Ⅰ 优良 0.80~2.50 Ⅱ 良好 2.50~4.25 Ⅲ 较好 4.25~7.20 Ⅳ 较差 >7.20 Ⅴ 极差 表 3 研究区地下水常规指标统计特征
Table 3. Statistical characteristics of groundwater conventional indicators in the study area
水质指标 最小值 中值 最大值 平均值 标准差 变异系数/% GB/T 14848—2017中
Ⅲ类标准限值超标率/% pH 6.66 7.36 8.33 7.36 0.32 — — — EC/(μS/cm) 344 888 2208 928 294 32.0 — — DO/(mg/L) 1.09 8.45 30.20 9.93 6.09 61.0 — — ORP/mV −217.6 96.0 544.0 117.2 128.1 109.0 — — 温度/℃ 15.8 20.3 29.0 21.1 3.2 15.0 — — 总硬度/(mg/L) 252.80 507.06 2776.62 573.80 340.07 59.3 450 68.4 TDS/(mg/L) 314.94 637.99 4170.93 765.02 527.57 69.0 1000 14.0 F−/(mg/L) ND 0.32 2.60 0.37 0.35 93.7 1 0.8 NH4 +/(mg/L) ND 0.12 2.78 0.18 0.29 163.8 0.5 0.8 NO3 −/(mg/L) 8.4 54.2 962 93.8 136.3 145.4 20 93.0 SO4 2−/(mg/L) 17.97 118.78 1191.70 154.46 163.89 106.1 250 14.0 HCO3 −/(mg/L) 178.67 360.32 559.74 353.75 76.53 21.6 — — K+/(mg/L) 0.36 0.73 10.23 1.47 2.04 138.7 — — Na+/(mg/L) 9.50 28.12 186.65 38.20 30.52 79.9 200 0.0 Ca2+/(mg/L) 70.94 159.42 847.43 177.88 108.15 60.8 — — Mg2+/(mg/L) 10.76 27.81 160.52 31.49 19.10 60.6 — — Cl−/(mg/L) 21.06 71.68 623.39 92.51 86.36 93.3 250 3.5 Cu/(mg/L) ND 0.3×10−2 0.8×10−2 0.3×10−2 0.1×10−2 44.1 1 0.0 Hg/(mg/L) ND 0.5×10−4 0.9×10−4 0.5×10−4 0.1×10−4 24.2 0.001 0.0 注:ND表示未检出;—表示不存在。 表 4 主成分分析主要计算结果
Table 4. Main calculation results of principal component analysis
项目 F1 F2 F3 特征值 7.185 1.197 1.049 贡献率/% 59.875 9.973 8.743 累积贡献率/% 59.875 69.848 78.591 载荷 总硬度 0.987 0.073 0.038 TDS 0.994 0.032 0.063 F− 0.062 0.728 −0.027 NH4 + −0.015 −0.020 0.929 NO3 − −0.200 −0.060 0.861 SO4 2− 0.951 0.022 0.196 Cl− 0.959 −0.071 −0.057 HCO3 − 0.240 0.469 0.295 K+ 0.195 −0.623 0.080 Na+ 0.846 −0.028 0.250 Ca2+ 0.971 0.083 0.050 Mg2+ 0.934 0.030 −0.008 注:加粗数字表示污染指标在此主成分有较大的载荷(>0. 70)。 -
[1] 水利部. 2021年中国水资源公报[A]. 北京: 水利部, 2022. [2] 环境保护部. 全国地下水污染防治规划(2011—2020年)[A/OL]. (2011-10-28)[2022-04-15].https://www.mee.gov.cn/gkml/hbb/bwj/201111/W020111109376922920938.pdf,2011. [3] LIU R L, ZHONG B, LI X P, et al. Analysis of groundwater changes (2003-2020) in the North China Plain using geodetic measurements[J]. Journal of Hydrology:Regional Studies,2022,41:101085. doi: 10.1016/j.ejrh.2022.101085 [4] 李雅丽, 张红娟, 闫海琴, 等.近20年全球农业生产对地下水影响研究的热点与趋势[J]. 环境工程技术学报,2022,12(4):1086-1095. doi: 10.12153/j.issn.1674-991X.20210357LI Y L, ZHANG H J, YAN H Q, et al. Research hot spots and trends on the impacts of global agricultural production on groundwater in the past two decades[J]. Journal of Environmental Engineering Technology,2022,12(4):1086-1095. doi: 10.12153/j.issn.1674-991X.20210357 [5] 张鑫. 地表水、地下水硝酸盐时空变化及其来源分析: 以渭河流域关中段为例[D]. 西安: 西北大学, 2021. [6] 周洋, 朱恒华, 刘治政, 等.山东省海岸带地区地下水有机污染特征分析[J]. 山东国土资源,2020,36(8):40-47. doi: 10.12128/j.issn.1672-6979.2020.08.006ZHOU Y, ZHU H H, LIU Z Z, et al. Analysis on organic pollution characteristics of groundwater in coastal area of Shandong Province[J]. Shandong Land and Resources,2020,36(8):40-47. doi: 10.12128/j.issn.1672-6979.2020.08.006 [7] 席北斗, 李娟, 汪洋, 等.京津冀地区地下水污染防治现状、问题及科技发展对策[J]. 环境科学研究,2019,32(1):1-9. doi: 10.13198/j.issn.1001-6929.2018.09.27XI B D, LI J, WANG Y, et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of Beijing-Tianjin-Hebei region: status quo, problems and goals[J]. Research of Environmental Sciences,2019,32(1):1-9. doi: 10.13198/j.issn.1001-6929.2018.09.27 [8] 刘启龙, 车丽娜.绥化市水源地地下水污染特征分析及水质评价[J]. 环境科学学报,2019,39(10):3528-3534. doi: 10.13671/j.hjkxxb.2019.0259LIU Q L, CHE L N. Analysis of groundwater pollution characteristics and water quality evaluation of water sources in Suihua[J]. Acta Scientiae Circumstantiae,2019,39(10):3528-3534. doi: 10.13671/j.hjkxxb.2019.0259 [9] 安阳市人民政府. 安阳市土地利用总体规划(2006—2020年)[A/OL]. [2022-04-15]. https://zrzyghj.anyang.gov.cn/2019/08-13/2192774.html. [10] GUO L, XIE Q, SHENG Y Z, et al. Co-variation of hydrochemistry, inorganic nitrogen, and microbial community composition along groundwater flowpath: a case study in Linzhou-Anyang area, Southern North China plain[J]. Applied Geochemistry,2022,140:105296. doi: 10.1016/j.apgeochem.2022.105296 [11] 赵海丽, 唐敏, 王颖, 等.近十年安阳市地下水水质综合评价及变化趋势分析[J]. 地下水,2020,42(6):24-27. doi: 10.19807/j.cnki.DXS.2020-06-008ZHAO H L, TANG M, WANG Y, et al. Comprehensive evaluation and trend analysis of groundwater quality in Anyang City in recent 10 years[J]. Ground Water,2020,42(6):24-27. doi: 10.19807/j.cnki.DXS.2020-06-008 [12] 张青艳.安阳市2019年地下水水质现状与评价分析[J]. 河南水利与南水北调,2020,49(12):38-39. doi: 10.3969/j.issn.1673-8853.2020.12.019ZHANG Q Y. Current status and evaluation analysis of groundwater quality in Anyang City in 2019[J]. Henan Water Resources & South-to-North Water Diversion,2020,49(12):38-39. doi: 10.3969/j.issn.1673-8853.2020.12.019 [13] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. [14] HUANG T M, PANG Z H, YUAN L J. Nitrate in groundwater and the unsaturated zone in (semi)arid Northern China: baseline and factors controlling its transport and fate[J]. Environmental Earth Sciences,2013,70(1):145-156. doi: 10.1007/s12665-012-2111-3 [15] 杨琰, 蔡鹤生, 刘存富, 周爱国.林州—安阳地区食管癌高发区地下水氮污染及防治措施[J]. 水文地质工程地质,2002,29(6):8-11. doi: 10.3969/j.issn.1000-3665.2002.06.003YANG Y, CAI H S, LIU C F, et al. NO3 − contamination of groundwater and preventable measures in the high distributive district of esophagus cancer in Linzhou and Anyang[J]. Hydrogeology and Engineering Geology,2002,29(6):8-11. doi: 10.3969/j.issn.1000-3665.2002.06.003 [16] XU B, ZHANG Y, WANG J F. Hydrogeochemistry and human health risks of groundwater fluoride in Jinhuiqu irrigation district of Wei River Basin, China[J]. Human and Ecological Risk Assessment:an International Journal,2019,25(1/2):230-249. [17] 生态环境部. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25.2—2019[S]. 北京: 中国环境出版集团, 2019. [18] 卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法: GB/T 5750—2006[S]. 北京: 中国标准出版社, 2006. [19] 环境保护部. 水质 可溶性阳离子(Li+ 、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法: HJ 812—2016[S]. 北京: 中国环境科学出版社, 2016. [20] 洪慧, 李娟, 汪洋, 等.基于统计学方法的地下水水质评价与成因分析: 以齐齐哈尔市为例[J]. 环境工程技术学报,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and causes analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160 [21] 李名升, 张建辉, 梁念, 等.常用水环境质量评价方法分析与比较[J]. 地理科学进展,2012,31(5):617-624. doi: 10.11820/dlkxjz.2012.05.010LI M S, ZHANG J H, LIANG N, et al. Comparisons of some common methods for water environmental quality assessment[J]. Progress in Geography,2012,31(5):617-624. doi: 10.11820/dlkxjz.2012.05.010 [22] 李贵明. 河南省商丘市浅层地下水水质污染分区[C]//中国煤炭学会矿井地质专业委员会2008年学术论坛. 北京: 中国煤炭学会, 2008: 615-620. [23] 成思, 温瑶, 许畅畅, 等.崇明岛浅层地下水化学特征及其影响机制[J]. 环境科学研究,2021,34(5):1120-1128. doi: 10.13198/j.issn.1001-6929.2020.09.13CHENG S, WEN Y, XU C C, et al. Hydrochemical characteristics and impact mechanism of shallow groundwater in Chongming Island, China[J]. Research of Environmental Sciences,2021,34(5):1120-1128. doi: 10.13198/j.issn.1001-6929.2020.09.13 [24] 孟利, 左锐, 王金生, 等.基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学,2017,37(10):3773-3786. doi: 10.3969/j.issn.1000-6923.2017.10.020MENG L, ZUO R, WANG J S, et al. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR[J]. China Environmental Science,2017,37(10):3773-3786. doi: 10.3969/j.issn.1000-6923.2017.10.020 [25] 左正金, 王献坤, 罗文金, 等.河南沈丘饮用水资源评价与用水规划[J]. 地下水,2004,26(3):161-164. doi: 10.3969/j.issn.1004-1184.2004.03.005 [26] ZHANG H, CHENG S Q, LI H F, et al. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China[J]. Science of the Total Environment,2020,741:140383. doi: 10.1016/j.scitotenv.2020.140383 [27] SHARMA M K, KUMAR M. Sulphate contamination in groundwater and its remediation: an overview[J]. Environmental Monitoring and Assessment,2020,192(2):74. doi: 10.1007/s10661-019-8051-6 [28] HU B, SONG X G, LU Y, et al. Fluoride enrichment mechanisms and related health risks of groundwater in the transition zone of geomorphic units, Northern China[J]. Environmental Research,2022,212:113588. doi: 10.1016/j.envres.2022.113588 [29] 李晓姣, 张岱琼, 乔俊, 等.基于多元统计方法的某地浅层地下水污染来源分析[J]. 中国环境监测,2020,36(1):88-95. doi: 10.19316/j.issn.1002-6002.2020.01.12LI X J, ZHANG D Q, QIAO J, et al. Analysis of shallow groundwater pollution sources in a certain area based on multivariate statistical approaches[J]. Environmental Monitoring in China,2020,36(1):88-95. doi: 10.19316/j.issn.1002-6002.2020.01.12 [30] 刘文信, 李新国, 李慧冬.菏泽市地下水氟化物分布特征及形成机理研究[J]. 环境与发展,2020,32(11):115-117.LIU W X, LI X G, LI H D. Study on distribution characteristics and formation mechanism of groundwater fluoride in Heze City[J]. Environment and Development,2020,32(11):115-117. [31] 姜体胜, 杨忠山, 王明玉, 等.北京南部地区地下水氟化物分布特征及成因分析[J]. 干旱区资源与环境,2012,26(3):96-100. doi: 10.13448/j.cnki.jalre.2012.03.030JIANG T S, YANG Z S, WANG M Y, et al. The distribution characteristics and causes of fluoride in groundwater of southern district, Beijing[J]. Journal of Arid Land Resources and Environment,2012,26(3):96-100. doi: 10.13448/j.cnki.jalre.2012.03.030 [32] 张敏, 平建华, 禹言, 等.同位素技术解析安阳河与地下水相互作用[J]. 水文地质工程地质,2019,46(6):31-39. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.05ZHANG M, PING J H, YU Y, et al. Isotope analyses of the interaction between the Anyang River and groundwater[J]. Hydrogeology & Engineering Geology,2019,46(6):31-39. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.05 [33] 陈娇, 宁立波, 王亚男, 等.基于构造控制的深层高氟地下水成因探讨[J]. 湖南师范大学自然科学学报,2013,36(5):86-91.CHEN J, NING L B, WANG Y N, et al. Research on the genesis of high-fluoride deep groundwater based on geological structure[J]. Journal of Natural Science of Hunan Normal University,2013,36(5):86-91. [34] WANG Z, JIANG Y H, AWASTHI M K, et al. Nitrate removal by combined heterotrophic and autotrophic denitrification processes: impact of coexistent ions[J]. Bioresource Technology,2018,250:838-845. doi: 10.1016/j.biortech.2017.12.009 [35] 李中原, 王国重, 张继宇, 等.彰武水库水环境质量评估[J]. 中国农学通报,2020,36(9):30-36. doi: 10.11924/j.issn.1000-6850.casb18110114LI Z Y, WANG G Z, ZHANG J Y, et al. Water environmental quality assessment of Zhangwu Reservoir[J]. Chinese Agricultural Science Bulletin,2020,36(9):30-36. ◇ doi: 10.11924/j.issn.1000-6850.casb18110114