留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氯乙烯对厌氧水解酸化菌的抑制作用及去除特性

宋雨佩 马玉石 张朝志 沈志强 周岳溪

宋雨佩,马玉石,张朝志,等.三氯乙烯对厌氧水解酸化菌的抑制作用及去除特性[J].环境工程技术学报,2023,13(3):1088-1096 doi: 10.12153/j.issn.1674-991X.20220650
引用本文: 宋雨佩,马玉石,张朝志,等.三氯乙烯对厌氧水解酸化菌的抑制作用及去除特性[J].环境工程技术学报,2023,13(3):1088-1096 doi: 10.12153/j.issn.1674-991X.20220650
SONG Y P,MA Y S,ZHANG C Z,et al.Inhibition and removal characteristics of trichloroethylene on anaerobic hydrolysis acidifying bacteria[J].Journal of Environmental Engineering Technology,2023,13(3):1088-1096 doi: 10.12153/j.issn.1674-991X.20220650
Citation: SONG Y P,MA Y S,ZHANG C Z,et al.Inhibition and removal characteristics of trichloroethylene on anaerobic hydrolysis acidifying bacteria[J].Journal of Environmental Engineering Technology,2023,13(3):1088-1096 doi: 10.12153/j.issn.1674-991X.20220650

三氯乙烯对厌氧水解酸化菌的抑制作用及去除特性

doi: 10.12153/j.issn.1674-991X.20220650
基金项目: 中央财政科技计划结余经费专项(2021-JY-32);国家水体污染控制与治理科技重大专项(2017ZX07402-002)
详细信息
    作者简介:

    宋雨佩(1998—),女,硕士研究生,主要研究方向为水污染控制技术,1273028041@qq.com

    通讯作者:

    周岳溪(1963—),男,研究员,主要研究方向为水污染控制技术,zhouyuexi@263.net

  • 中图分类号: X703

Inhibition and removal characteristics of trichloroethylene on anaerobic hydrolysis acidifying bacteria

  • 摘要:

    三氯乙烯(TCE)是石化废水中典型的有机污染物,对微生物具有极强的毒性。通过对挥发性脂肪酸批次试验进行生物测定,探讨TCE对厌氧水解酸化菌的产酸抑制作用,在TCE作用下水解酸化菌的胞外聚合物(EPS)和污泥zeta电位的变化以及TCE的去除特性。结果表明:TCE浓度为75 mg/L(半抑制浓度,EC50)时,对水解酸化菌的产酸量有抑制作用;随着TCE浓度升高,水解酸化菌的EPS中蛋白质浓度先增大后减少,其中TCE浓度为50 mg/L时EPS中蛋白质浓度达到最大值,为(33.94±0.25)mg/L;zeta电位的结果显示,污泥的凝聚性能随TCE浓度增大(0~100 mg/L)而增大;厌氧水解酸化菌对TCE的脱氯能力随TCE浓度的升高而降低,水解酸化菌转化TCE的脱氯率由TCE浓度为10 mg/L时的77.83%降为200 mg/L时的6.67%。TCE对水解酸化菌具有强烈的抑制作用,TCE主要是通过抑制细胞的蛋白质合成来抑制微生物活性,进而限制水解酸化菌降解TCE的能力。

     

  • 图  1  TCE浓度对累积产酸的影响及比产酸抑制率拟合曲线

    注:C*为TCE浓度。

    Figure  1.  Effects of TCE concentration on cumulative acid production and fitting curve of specific acid production inhibition rate

    图  2  TCE浓度对水解酸化菌的SVA的影响

    Figure  2.  Effect of TCE concentration on SVA of hydrolysis acidifying bacteria

    图  3  不同TCE浓度下LB-EPS和TB-EPS的多糖与蛋白质浓度的变化

    Figure  3.  Variation of polysaccharide and protein concentrations in LB-EPS and TB-EPS under different TCE concentrations

    图  4  不同TCE浓度下污泥zeta电位随时间的变化

    Figure  4.  Variation of sludge zeta potential with time at different TCE concentrations

    图  5  水解酸化菌对不同浓度TCE的还原脱氯率

    Figure  5.  Reduction and dehlorination rates of TCE with different concentrations by hydrolysis acidifying bacteria

    图  6  水解酸化反应结束后SMP及EPS的紫外扫描光谱图

    Figure  6.  UV-vis spectra of SMP and EPS after hydrolysis acidification

    表  1  水解酸化菌的营养物质配比[24]

    Table  1.   Nutrient ratio of hydrolysis acidifying bacteria mg/L 

    物质浓度物质浓度
    NH4HCO32 096MnSO4∙H2O39.2
    K2HPO4500FeSO4∙7H2O100
    MgCl∙6H2O400CuSO4∙5H2O20
    CoCl2∙6H2O0.6NaHCO32 688
    下载: 导出CSV
  • [1] JAFARINEJAD S, JIANG S C. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters[J]. Journal of Environmental Chemical Engineering,2019,7(5):103326. doi: 10.1016/j.jece.2019.103326
    [2] TIAN X M, SONG Y D, SHEN Z Q, et al. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment[J]. Journal of Cleaner Production,2020,245:118692. doi: 10.1016/j.jclepro.2019.118692
    [3] JIANG Y M, HUANG H Y, TIAN Y R, et al. Stochasticity versus determinism: microbial community assembly patterns under specific conditions in petrochemical activated sludge[J]. Journal of Hazardous Materials,2021,407:124372. doi: 10.1016/j.jhazmat.2020.124372
    [4] 马玉石. 共代谢降解三氯乙烯研究[D]. 兰州: 兰州交通大学, 2021.
    [5] 张克刚. 过硫酸钠和过氧化钙原位修复三氯乙烯污染土壤和地下水的研究[D]. 济南: 济南大学, 2020.
    [6] LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal,2021,404:126534. doi: 10.1016/j.cej.2020.126534
    [7] LIU Z, WANG M X, YU P, et al. Maternal trichloroethylene exposure and metabolic gene polymorphisms may interact during fetal cardiovascular malformation[J]. Reproductive Toxicology,2021,106:1-8. doi: 10.1016/j.reprotox.2021.09.010
    [8] 魏鹏刚, 韩璐, 赵迎新, 等.球磨零价镁/石墨(ZVMg/C)降解水中三氯乙烯[J]. 环境化学,2022,41(1):276-287.

    WEI P G, HAN L, ZHAO Y X, et al. Research on the degradation of trichloroethylene in aqueous solution by ball milling Magnesium/Graphite (ZVMg/C)[J]. Environmental Chemistry,2022,41(1):276-287.
    [9] 李慧颖, 王盼盼, 刘鹏, 等.氯代烃污染场地原位热脱附降温阶段土壤气相污染富集与分布特征[J]. 环境科学研究,2022,35(5):1159-1168. doi: 10.13198/j.issn.1001-6929.2022.03.19

    LI H Y, WANG P P, LIU P, et al. Enrichment and distribution characteristics of soil gas-phase contamination in cooling stage of in situ thermal desorption at chlorinated hydrocarbon contaminated site[J]. Research of Environmental Sciences,2022,35(5):1159-1168. doi: 10.13198/j.issn.1001-6929.2022.03.19
    [10] GAFNI A, SIEBNER H, BERNSTEIN A. Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey[J]. Water Research,2020,171:115431. doi: 10.1016/j.watres.2019.115431
    [11] 孙仲平, 吴乃瑾, 杨苏才, 等.微生物降解污染地下水中三氯乙烯的微宇宙试验研究[J]. 环境工程技术学报,2021,11(2):298-306. doi: 10.12153/j.issn.1674-991X.20200150

    SUN Z P, WU N J, YANG S C, et al. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwater[J]. Journal of Environmental Engineering Technology,2021,11(2):298-306. doi: 10.12153/j.issn.1674-991X.20200150
    [12] HERON G, LACHANCE J, BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring & Remediation,2013,33(4):31-43.
    [13] 雷丽丹, 周正伟, 高雅, 等.电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程,2021,28(3):108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197

    LEI L D, ZHOU Z W, GAO Y, et al. TCE treatment in electro-Fenton system with electrochemical oxidation modified graphite felt electrode[J]. Safety and Environmental Engineering,2021,28(3):108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197
    [14] 苑泉, 吴远远, 金正宇, 等.水解酸化对好氧颗粒污泥形成及脱氮除磷的影响[J]. 环境科学研究,2018,31(2):360-368. doi: 10.13198/j.issn.1001-6929.2017.03.65

    YUAN Q, WU Y Y, JIN Z Y, et al. Impacts of hydrolysis and acidification on the formation of aerobic granular sludge and its nitrogen and phosphorus removal[J]. Research of Environmental Sciences,2018,31(2):360-368. doi: 10.13198/j.issn.1001-6929.2017.03.65
    [15] ZHANG Z W, YU Y, XI H B, et al. Review of micro-aeration hydrolysis acidification for the pretreatment of toxic and refractory organic wastewater[J]. Journal of Cleaner Production,2021,317:128343. doi: 10.1016/j.jclepro.2021.128343
    [16] SONG G Q, YU Y, LIU T, et al. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater[J]. Journal of Hazardous Materials,2019,369:465-473. doi: 10.1016/j.jhazmat.2019.02.034
    [17] HARB M, LOU E, SMITH A L, et al. Perspectives on the fate of micropollutants in mainstream anaerobic wastewater treatment[J]. Current Opinion in Biotechnology,2019,57:94-100. doi: 10.1016/j.copbio.2019.02.022
    [18] 阮仁俊, 李运晴, 项经纬, 等.废铁屑对剩余污泥厌氧消化特性的影响[J]. 环境科学研究,2020,33(9):2156-2162.

    RUAN R J, LI Y Q, XIANG J W, et al. Influence of rusty scrap iron on anaerobic digestion performance of waste-activated sludge[J]. Research of Environmental Sciences,2020,33(9):2156-2162.
    [19] ZHU H, HAN Y X, MA W C, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene[J]. Bioresource Technology,2018,262:302-309. doi: 10.1016/j.biortech.2018.04.080
    [20] GARCÍA-MANCHA N, MONSALVO V M, PUYOL D, et al. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions[J]. Journal of Hazardous Materials,2017,339:320-329. doi: 10.1016/j.jhazmat.2017.06.032
    [21] LIU X W, HE R, SHEN D S. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge[J]. Journal of Environmental Management,2008,88(4):939-946. doi: 10.1016/j.jenvman.2007.04.021
    [22] CHEN D, SHEN J Y, JIANG X B, et al. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system[J]. Water Research,2019,157:8-18. doi: 10.1016/j.watres.2019.03.054
    [23] 杨硕, 赵雯楚, 阎秀兰, 等.Pickering乳化强化地下水三氯乙烯NAPL修复[J]. 中国环境科学,2022,42(8):3713-3719. doi: 10.19674/j.cnki.issn1000-6923.20220419.005

    YANG S, ZHAO W C, YAN X L, et al. Pickering emulsion for enhancing oxidative degradation of trichloroethylene nonaqueous-phase liquid in groundwater[J]. China Environmental Science,2022,42(8):3713-3719. doi: 10.19674/j.cnki.issn1000-6923.20220419.005
    [24] LIN C Y. Effect of heavy metals on acidogenesis in anaerobic digestion[J]. Water Research,1993,27(1):147-152. doi: 10.1016/0043-1354(93)90205-V
    [25] 谭煜, 付丽亚, 周鉴, 等.胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报,2021,11(2):307-313. doi: 10.12153/j.issn.1674-991X.20200178

    TAN Y, FU L Y, ZHOU J, et al. Research progress of the effects of extracellular polymeric substances (EPS) on wastewater treatment system[J]. Journal of Environmental Engineering Technology,2021,11(2):307-313. doi: 10.12153/j.issn.1674-991X.20200178
    [26] GRINTZALIS K, GEORGIOU C D, SCHNEIDER Y J. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination[J]. Analytical Biochemistry,2015,480:28-30. doi: 10.1016/j.ab.2015.03.024
    [27] VALENTINO F, MUNARIN G, BIASIOLO M, et al. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process[J]. Journal of Environmental Chemical Engineering,2021,9(5):106062. doi: 10.1016/j.jece.2021.106062
    [28] RAJAGOPAL R, BÉLINE F. Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential[J]. Bioresource Technology,2011,102(10):5653-5658. doi: 10.1016/j.biortech.2011.02.068
    [29] XU S Y, KARTHIKEYAN O P, SELVAM A, et al. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor[J]. Bioresource Technology,2012,126:425-430. doi: 10.1016/j.biortech.2011.12.059
    [30] MAURYA A, KUMAR R, YADAV P, et al. Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium[J]. Bioresource Technology,2022,352:127109. doi: 10.1016/j.biortech.2022.127109
    [31] TIAN X, SONG Y, XI H, et al. Inhibition and removal of trichloroacetaldehyde by biological acidification with glucose co-metabolism[J]. Journal of Hazardous Materials,2020,386:121796. doi: 10.1016/j.jhazmat.2019.121796
    [32] NOUHA K, KUMAR R S, BALASUBRAMANIAN S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences,2018,66:225-245. doi: 10.1016/j.jes.2017.05.020
    [33] ZENG W M, ZHANG S S, XIA M C, et al. Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions[J]. RSC Advances,2020,10(34):20385-20394. doi: 10.1039/C9RA10560C
    [34] SHENG G P, YU H Q, YUE Z B. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances[J]. Applied Microbiology and Biotechnology,2005,69(2):216-222. doi: 10.1007/s00253-005-1990-6
    [35] ZHANG Z W, YU Y, XI H B, et al. Inhibitory effect of individual and mixtures of nitrophenols on anaerobic toxicity assay of nanerobic systems: metabolism and evaluation modeling[J]. Journal of Environmental Management,2022,304:114237. doi: 10.1016/j.jenvman.2021.114237
    [36] KIM Y, OH S, KIM S H. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157: H7[J]. Biochemical and Biophysical Research Communications,2009,379(2):324-329. doi: 10.1016/j.bbrc.2008.12.053
    [37] NOWAK B, ŚRÓTTEK M, CISZEK-LENDA M, et al. Exopolysaccharide from Lactobacillus rhamnosus KL37 inhibits T cell-dependent immune response in mice[J]. Archivum Immunologiae et Therapiae Experimentalis,2020,68(3):17. doi: 10.1007/s00005-020-00581-7
    [38] ZHU L L, WU D, ZHANG H N, et al. Effects of atmospheric and room temperature plasma (ARTP) mutagenesis on physicochemical characteristics and immune activity in vitro of Hericium erinaceus polysaccharides[J]. Molecules (Basel, Switzerland),2019,24(2):262. doi: 10.3390/molecules24020262
    [39] FANG F, HU H L, QIN M M, et al. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge[J]. Bioresource Technology,2015,185:1-6. doi: 10.1016/j.biortech.2015.02.054
    [40] LI K, WEI D, ZHANG G, et al. Toxicity of bisphenol A to aerobic granular sludge in sequencing batch reactors[J]. Journal of Molecular Liquids,2015,209:284-288. doi: 10.1016/j.molliq.2015.05.046
    [41] WANG Y Y, QIN J, ZHOU S, et al. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion[J]. Water Research,2015,73:252-264. doi: 10.1016/j.watres.2015.01.034
    [42] GUO X, WANG X, LIU J X. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation[J]. Scientific Reports,2016,6:28391. doi: 10.1038/srep28391
    [43] HSIEH K M, MURGEL G A, LION L W, et al. Interactions of microbial biofilms with toxic trace metals: 2. prediction and verification of an integrated computer model of lead (Ⅱ) distribution in the presence of microbial activity[J]. Biotechnology and Bioengineering,1994,44(2):232-239. doi: 10.1002/bit.260440212
    [44] MARTÍNEZ-HERNÁNDEZ S, TEXIER A C, de MARÍA CUERVO-LÓPEZ F, et al. 2-Chlorophenol consumption and its effect on the nitrifying sludge[J]. Journal of Hazardous Materials,2011,185(2/3):1592-1595.
    [45] YUAN L, ZHI W, LIU Y S, et al. Lead toxicity to the performance, viability, and community composition of activated sludge microorganisms[J]. Environmental Science & Technology,2015,49(2):824-830.
    [46] DING A, LIN D C, ZHAO Y X, et al. Effect of metabolic uncoupler, 2,4-dinitrophenol (DNP) on sludge properties and fouling potential in ultrafiltration membrane process[J]. Science of the Total Environment,2019,650:1882-1888. doi: 10.1016/j.scitotenv.2018.09.321
    [47] FENG Q, TAI X R, SUN Y Q, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal,2019,378:122123. doi: 10.1016/j.cej.2019.122123
    [48] 张兰河, 袁镇涛, 赵浩杰, 等.外加电流对AO工艺缺氧区脱氮效率与污泥絮凝的影响[J]. 化工进展,2021,40(11):6369-6377. doi: 10.16085/j.issn.1000-6613.2020-2269

    ZHANG L H, YUAN Z T, ZHAO H J, et al. Effect of external electric current on denitrification efficiency and sludge flocculation of anoxic zone using AO process[J]. Chemical Industry and Engineering Progress,2021,40(11):6369-6377. doi: 10.16085/j.issn.1000-6613.2020-2269
    [49] ZHANG Z W, YU Y, XI H B, et al. Single and joint inhibitory effect of nitrophenols on activated sludge[J]. Journal of Environmental Management,2021,294:112945. doi: 10.1016/j.jenvman.2021.112945
    [50] 罗璐, 施周, 许仕荣, 等.溶菌酶预处理对剩余污泥脱水性能的影响[J]. 中国给水排水,2022,38(3):87-91. doi: 10.19853/j.zgjsps.1000-4602.2022.03.014

    LUO L, SHI Z, XU S R, et al. Effect of lysozyme pretreatment on dewatering performance of excess activated sludge[J]. China Water & Wastewater,2022,38(3):87-91. doi: 10.19853/j.zgjsps.1000-4602.2022.03.014
    [51] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances,2010,28(6):882-894. doi: 10.1016/j.biotechadv.2010.08.001
    [52] 刘燕, 王越兴, 莫华娟, 等.有机底物对活性污泥胞外聚合物的影响[J]. 环境化学,2004,23(3):252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003

    LIU Y, WANG Y X, MO H J, et al. Effect of organic substrate on the formation of extracellular polymeric substrates in activated sludge[J]. Environmental Chemistry,2004,23(3):252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003
    [53] ANDREADAKIS A D. Physical and chemical properties of activated sludge floc[J]. Water Research,1993,27(12):1707-1714. doi: 10.1016/0043-1354(93)90107-S
    [54] 张均, 汤木娥, 周易, 等.钯基催化剂电催化氢解处理氯代有机物的研究进展[J]. 环境科学研究,2022,35(1):119-130. doi: 10.13198/j.issn.1001-6929.2021.09.14

    ZHANG J, TANG M E, ZHOU Y, et al. Progress in electrocatalytic hydrogenolysis of chlorinated organic compounds on palladium-based catalysts[J]. Research of Environmental Sciences,2022,35(1):119-130. ◇ doi: 10.13198/j.issn.1001-6929.2021.09.14
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  139
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24

目录

    /

    返回文章
    返回