Inhibition and removal characteristics of trichloroethylene on anaerobic hydrolysis acidifying bacteria
-
摘要:
三氯乙烯(TCE)是石化废水中典型的有机污染物,对微生物具有极强的毒性。通过对挥发性脂肪酸批次试验进行生物测定,探讨TCE对厌氧水解酸化菌的产酸抑制作用,在TCE作用下水解酸化菌的胞外聚合物(EPS)和污泥zeta电位的变化以及TCE的去除特性。结果表明:TCE浓度为75 mg/L(半抑制浓度,EC50)时,对水解酸化菌的产酸量有抑制作用;随着TCE浓度升高,水解酸化菌的EPS中蛋白质浓度先增大后减少,其中TCE浓度为50 mg/L时EPS中蛋白质浓度达到最大值,为(33.94±0.25)mg/L;zeta电位的结果显示,污泥的凝聚性能随TCE浓度增大(0~100 mg/L)而增大;厌氧水解酸化菌对TCE的脱氯能力随TCE浓度的升高而降低,水解酸化菌转化TCE的脱氯率由TCE浓度为10 mg/L时的77.83%降为200 mg/L时的6.67%。TCE对水解酸化菌具有强烈的抑制作用,TCE主要是通过抑制细胞的蛋白质合成来抑制微生物活性,进而限制水解酸化菌降解TCE的能力。
Abstract:Trichloroethylene (TCE) is a typical organic pollutant in petrochemical wastewater, which is highly toxic to microorganisms. Batch bioassays of volatile fatty acid were carried out to explore the inhibitory effect of TCE on acid production of anaerobic hydrolysis acidifying bacteria, the variation of extracellular polymeric substances (EPS) and mud zeta potential of hydrolysis acidifying bacteria under TCE shock, and the removal characteristics of TCE. The results showed that TCE at a concentration of 75 mg/L (semi-inhibitory concentration, EC50) had an inhibitory effect on the acid production of hydrolysis acidifying bacteria. With the increase of TCE concentration, the protein concentration in EPS of hydrolsis acidifying bacteria first increased and then decreased. The maximum value of protein concentration in EPS was (33.94±0.25)mg/L when TCE concentration was 50 mg/L. The results of zeta potential showed that the coagulation performance of sludge increased with the increase of TCE concentration (0-100 mg/L). The dechlorination ability of anaerobic hydrolysis acidifying bacteria to TCE decreased with the increase of TCE concentration, and the dechlorination rate of TCE converted by hydrolysis acidifying bacteria was 77.83% when the concentration of TCE was 10 mg/L. It decreased to 6.67% at 200 mg/L. TCE had a strong inhibitory effect on hydrolysis acidifying bacteria. TCE mainly inhibited microbial activity by inhibiting the protein synthesis of cells, thereby limiting the ability of hydrolysis acidifying bacteria to degrade TCE.
-
表 1 水解酸化菌的营养物质配比[24]
Table 1. Nutrient ratio of hydrolysis acidifying bacteria
mg/L 物质 浓度 物质 浓度 NH4HCO3 2 096 MnSO4∙H2O 39.2 K2HPO4 500 FeSO4∙7H2O 100 MgCl∙6H2O 400 CuSO4∙5H2O 20 CoCl2∙6H2O 0.6 NaHCO3 2 688 -
[1] JAFARINEJAD S, JIANG S C. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters[J]. Journal of Environmental Chemical Engineering,2019,7(5):103326. doi: 10.1016/j.jece.2019.103326 [2] TIAN X M, SONG Y D, SHEN Z Q, et al. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment[J]. Journal of Cleaner Production,2020,245:118692. doi: 10.1016/j.jclepro.2019.118692 [3] JIANG Y M, HUANG H Y, TIAN Y R, et al. Stochasticity versus determinism: microbial community assembly patterns under specific conditions in petrochemical activated sludge[J]. Journal of Hazardous Materials,2021,407:124372. doi: 10.1016/j.jhazmat.2020.124372 [4] 马玉石. 共代谢降解三氯乙烯研究[D]. 兰州: 兰州交通大学, 2021. [5] 张克刚. 过硫酸钠和过氧化钙原位修复三氯乙烯污染土壤和地下水的研究[D]. 济南: 济南大学, 2020. [6] LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal,2021,404:126534. doi: 10.1016/j.cej.2020.126534 [7] LIU Z, WANG M X, YU P, et al. Maternal trichloroethylene exposure and metabolic gene polymorphisms may interact during fetal cardiovascular malformation[J]. Reproductive Toxicology,2021,106:1-8. doi: 10.1016/j.reprotox.2021.09.010 [8] 魏鹏刚, 韩璐, 赵迎新, 等.球磨零价镁/石墨(ZVMg/C)降解水中三氯乙烯[J]. 环境化学,2022,41(1):276-287.WEI P G, HAN L, ZHAO Y X, et al. Research on the degradation of trichloroethylene in aqueous solution by ball milling Magnesium/Graphite (ZVMg/C)[J]. Environmental Chemistry,2022,41(1):276-287. [9] 李慧颖, 王盼盼, 刘鹏, 等.氯代烃污染场地原位热脱附降温阶段土壤气相污染富集与分布特征[J]. 环境科学研究,2022,35(5):1159-1168. doi: 10.13198/j.issn.1001-6929.2022.03.19LI H Y, WANG P P, LIU P, et al. Enrichment and distribution characteristics of soil gas-phase contamination in cooling stage of in situ thermal desorption at chlorinated hydrocarbon contaminated site[J]. Research of Environmental Sciences,2022,35(5):1159-1168. doi: 10.13198/j.issn.1001-6929.2022.03.19 [10] GAFNI A, SIEBNER H, BERNSTEIN A. Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey[J]. Water Research,2020,171:115431. doi: 10.1016/j.watres.2019.115431 [11] 孙仲平, 吴乃瑾, 杨苏才, 等.微生物降解污染地下水中三氯乙烯的微宇宙试验研究[J]. 环境工程技术学报,2021,11(2):298-306. doi: 10.12153/j.issn.1674-991X.20200150SUN Z P, WU N J, YANG S C, et al. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwater[J]. Journal of Environmental Engineering Technology,2021,11(2):298-306. doi: 10.12153/j.issn.1674-991X.20200150 [12] HERON G, LACHANCE J, BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring & Remediation,2013,33(4):31-43. [13] 雷丽丹, 周正伟, 高雅, 等.电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程,2021,28(3):108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197LEI L D, ZHOU Z W, GAO Y, et al. TCE treatment in electro-Fenton system with electrochemical oxidation modified graphite felt electrode[J]. Safety and Environmental Engineering,2021,28(3):108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197 [14] 苑泉, 吴远远, 金正宇, 等.水解酸化对好氧颗粒污泥形成及脱氮除磷的影响[J]. 环境科学研究,2018,31(2):360-368. doi: 10.13198/j.issn.1001-6929.2017.03.65YUAN Q, WU Y Y, JIN Z Y, et al. Impacts of hydrolysis and acidification on the formation of aerobic granular sludge and its nitrogen and phosphorus removal[J]. Research of Environmental Sciences,2018,31(2):360-368. doi: 10.13198/j.issn.1001-6929.2017.03.65 [15] ZHANG Z W, YU Y, XI H B, et al. Review of micro-aeration hydrolysis acidification for the pretreatment of toxic and refractory organic wastewater[J]. Journal of Cleaner Production,2021,317:128343. doi: 10.1016/j.jclepro.2021.128343 [16] SONG G Q, YU Y, LIU T, et al. Performance of microaeration hydrolytic acidification process in the pretreatment of 2-butenal manufacture wastewater[J]. Journal of Hazardous Materials,2019,369:465-473. doi: 10.1016/j.jhazmat.2019.02.034 [17] HARB M, LOU E, SMITH A L, et al. Perspectives on the fate of micropollutants in mainstream anaerobic wastewater treatment[J]. Current Opinion in Biotechnology,2019,57:94-100. doi: 10.1016/j.copbio.2019.02.022 [18] 阮仁俊, 李运晴, 项经纬, 等.废铁屑对剩余污泥厌氧消化特性的影响[J]. 环境科学研究,2020,33(9):2156-2162.RUAN R J, LI Y Q, XIANG J W, et al. Influence of rusty scrap iron on anaerobic digestion performance of waste-activated sludge[J]. Research of Environmental Sciences,2020,33(9):2156-2162. [19] ZHU H, HAN Y X, MA W C, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene[J]. Bioresource Technology,2018,262:302-309. doi: 10.1016/j.biortech.2018.04.080 [20] GARCÍA-MANCHA N, MONSALVO V M, PUYOL D, et al. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions[J]. Journal of Hazardous Materials,2017,339:320-329. doi: 10.1016/j.jhazmat.2017.06.032 [21] LIU X W, HE R, SHEN D S. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge[J]. Journal of Environmental Management,2008,88(4):939-946. doi: 10.1016/j.jenvman.2007.04.021 [22] CHEN D, SHEN J Y, JIANG X B, et al. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system[J]. Water Research,2019,157:8-18. doi: 10.1016/j.watres.2019.03.054 [23] 杨硕, 赵雯楚, 阎秀兰, 等.Pickering乳化强化地下水三氯乙烯NAPL修复[J]. 中国环境科学,2022,42(8):3713-3719. doi: 10.19674/j.cnki.issn1000-6923.20220419.005YANG S, ZHAO W C, YAN X L, et al. Pickering emulsion for enhancing oxidative degradation of trichloroethylene nonaqueous-phase liquid in groundwater[J]. China Environmental Science,2022,42(8):3713-3719. doi: 10.19674/j.cnki.issn1000-6923.20220419.005 [24] LIN C Y. Effect of heavy metals on acidogenesis in anaerobic digestion[J]. Water Research,1993,27(1):147-152. doi: 10.1016/0043-1354(93)90205-V [25] 谭煜, 付丽亚, 周鉴, 等.胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报,2021,11(2):307-313. doi: 10.12153/j.issn.1674-991X.20200178TAN Y, FU L Y, ZHOU J, et al. Research progress of the effects of extracellular polymeric substances (EPS) on wastewater treatment system[J]. Journal of Environmental Engineering Technology,2021,11(2):307-313. doi: 10.12153/j.issn.1674-991X.20200178 [26] GRINTZALIS K, GEORGIOU C D, SCHNEIDER Y J. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination[J]. Analytical Biochemistry,2015,480:28-30. doi: 10.1016/j.ab.2015.03.024 [27] VALENTINO F, MUNARIN G, BIASIOLO M, et al. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process[J]. Journal of Environmental Chemical Engineering,2021,9(5):106062. doi: 10.1016/j.jece.2021.106062 [28] RAJAGOPAL R, BÉLINE F. Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential[J]. Bioresource Technology,2011,102(10):5653-5658. doi: 10.1016/j.biortech.2011.02.068 [29] XU S Y, KARTHIKEYAN O P, SELVAM A, et al. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor[J]. Bioresource Technology,2012,126:425-430. doi: 10.1016/j.biortech.2011.12.059 [30] MAURYA A, KUMAR R, YADAV P, et al. Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium[J]. Bioresource Technology,2022,352:127109. doi: 10.1016/j.biortech.2022.127109 [31] TIAN X, SONG Y, XI H, et al. Inhibition and removal of trichloroacetaldehyde by biological acidification with glucose co-metabolism[J]. Journal of Hazardous Materials,2020,386:121796. doi: 10.1016/j.jhazmat.2019.121796 [32] NOUHA K, KUMAR R S, BALASUBRAMANIAN S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences,2018,66:225-245. doi: 10.1016/j.jes.2017.05.020 [33] ZENG W M, ZHANG S S, XIA M C, et al. Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions[J]. RSC Advances,2020,10(34):20385-20394. doi: 10.1039/C9RA10560C [34] SHENG G P, YU H Q, YUE Z B. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances[J]. Applied Microbiology and Biotechnology,2005,69(2):216-222. doi: 10.1007/s00253-005-1990-6 [35] ZHANG Z W, YU Y, XI H B, et al. Inhibitory effect of individual and mixtures of nitrophenols on anaerobic toxicity assay of nanerobic systems: metabolism and evaluation modeling[J]. Journal of Environmental Management,2022,304:114237. doi: 10.1016/j.jenvman.2021.114237 [36] KIM Y, OH S, KIM S H. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157: H7[J]. Biochemical and Biophysical Research Communications,2009,379(2):324-329. doi: 10.1016/j.bbrc.2008.12.053 [37] NOWAK B, ŚRÓTTEK M, CISZEK-LENDA M, et al. Exopolysaccharide from Lactobacillus rhamnosus KL37 inhibits T cell-dependent immune response in mice[J]. Archivum Immunologiae et Therapiae Experimentalis,2020,68(3):17. doi: 10.1007/s00005-020-00581-7 [38] ZHU L L, WU D, ZHANG H N, et al. Effects of atmospheric and room temperature plasma (ARTP) mutagenesis on physicochemical characteristics and immune activity in vitro of Hericium erinaceus polysaccharides[J]. Molecules (Basel, Switzerland),2019,24(2):262. doi: 10.3390/molecules24020262 [39] FANG F, HU H L, QIN M M, et al. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge[J]. Bioresource Technology,2015,185:1-6. doi: 10.1016/j.biortech.2015.02.054 [40] LI K, WEI D, ZHANG G, et al. Toxicity of bisphenol A to aerobic granular sludge in sequencing batch reactors[J]. Journal of Molecular Liquids,2015,209:284-288. doi: 10.1016/j.molliq.2015.05.046 [41] WANG Y Y, QIN J, ZHOU S, et al. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion[J]. Water Research,2015,73:252-264. doi: 10.1016/j.watres.2015.01.034 [42] GUO X, WANG X, LIU J X. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation[J]. Scientific Reports,2016,6:28391. doi: 10.1038/srep28391 [43] HSIEH K M, MURGEL G A, LION L W, et al. Interactions of microbial biofilms with toxic trace metals: 2. prediction and verification of an integrated computer model of lead (Ⅱ) distribution in the presence of microbial activity[J]. Biotechnology and Bioengineering,1994,44(2):232-239. doi: 10.1002/bit.260440212 [44] MARTÍNEZ-HERNÁNDEZ S, TEXIER A C, de MARÍA CUERVO-LÓPEZ F, et al. 2-Chlorophenol consumption and its effect on the nitrifying sludge[J]. Journal of Hazardous Materials,2011,185(2/3):1592-1595. [45] YUAN L, ZHI W, LIU Y S, et al. Lead toxicity to the performance, viability, and community composition of activated sludge microorganisms[J]. Environmental Science & Technology,2015,49(2):824-830. [46] DING A, LIN D C, ZHAO Y X, et al. Effect of metabolic uncoupler, 2,4-dinitrophenol (DNP) on sludge properties and fouling potential in ultrafiltration membrane process[J]. Science of the Total Environment,2019,650:1882-1888. doi: 10.1016/j.scitotenv.2018.09.321 [47] FENG Q, TAI X R, SUN Y Q, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal,2019,378:122123. doi: 10.1016/j.cej.2019.122123 [48] 张兰河, 袁镇涛, 赵浩杰, 等.外加电流对AO工艺缺氧区脱氮效率与污泥絮凝的影响[J]. 化工进展,2021,40(11):6369-6377. doi: 10.16085/j.issn.1000-6613.2020-2269ZHANG L H, YUAN Z T, ZHAO H J, et al. Effect of external electric current on denitrification efficiency and sludge flocculation of anoxic zone using AO process[J]. Chemical Industry and Engineering Progress,2021,40(11):6369-6377. doi: 10.16085/j.issn.1000-6613.2020-2269 [49] ZHANG Z W, YU Y, XI H B, et al. Single and joint inhibitory effect of nitrophenols on activated sludge[J]. Journal of Environmental Management,2021,294:112945. doi: 10.1016/j.jenvman.2021.112945 [50] 罗璐, 施周, 许仕荣, 等.溶菌酶预处理对剩余污泥脱水性能的影响[J]. 中国给水排水,2022,38(3):87-91. doi: 10.19853/j.zgjsps.1000-4602.2022.03.014LUO L, SHI Z, XU S R, et al. Effect of lysozyme pretreatment on dewatering performance of excess activated sludge[J]. China Water & Wastewater,2022,38(3):87-91. doi: 10.19853/j.zgjsps.1000-4602.2022.03.014 [51] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances,2010,28(6):882-894. doi: 10.1016/j.biotechadv.2010.08.001 [52] 刘燕, 王越兴, 莫华娟, 等.有机底物对活性污泥胞外聚合物的影响[J]. 环境化学,2004,23(3):252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003LIU Y, WANG Y X, MO H J, et al. Effect of organic substrate on the formation of extracellular polymeric substrates in activated sludge[J]. Environmental Chemistry,2004,23(3):252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003 [53] ANDREADAKIS A D. Physical and chemical properties of activated sludge floc[J]. Water Research,1993,27(12):1707-1714. doi: 10.1016/0043-1354(93)90107-S [54] 张均, 汤木娥, 周易, 等.钯基催化剂电催化氢解处理氯代有机物的研究进展[J]. 环境科学研究,2022,35(1):119-130. doi: 10.13198/j.issn.1001-6929.2021.09.14ZHANG J, TANG M E, ZHOU Y, et al. Progress in electrocatalytic hydrogenolysis of chlorinated organic compounds on palladium-based catalysts[J]. Research of Environmental Sciences,2022,35(1):119-130. ◇ doi: 10.13198/j.issn.1001-6929.2021.09.14