留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温环境汽油机颗粒捕集器再生间隔里程评估方法

付雨民 钱立运 许闯

付雨民,钱立运,许闯.低温环境汽油机颗粒捕集器再生间隔里程评估方法[J].环境工程技术学报,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654
引用本文: 付雨民,钱立运,许闯.低温环境汽油机颗粒捕集器再生间隔里程评估方法[J].环境工程技术学报,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654
FU Y M,QIAN L Y,XU C.Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment[J].Journal of Environmental Engineering Technology,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654
Citation: FU Y M,QIAN L Y,XU C.Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment[J].Journal of Environmental Engineering Technology,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654

低温环境汽油机颗粒捕集器再生间隔里程评估方法

doi: 10.12153/j.issn.1674-991X.20220654
基金项目: 国家重点研发计划项目(2018YFE0106800);中央级公益性科研院所基本科研业务专项(2022YSKY-05)
详细信息
    作者简介:

    付雨民(1977—),男,高级工程师,硕士,主要研究方向为发动机电控系统和在线诊断,fuym@vecc.org.cn

  • 中图分类号: X513

Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment

  • 摘要:

    对汽油机颗粒捕集器(gasoline particulate filter,GPF)碳载量估算的温度修正方法,以及低温环境下的GPF再生间隔里程进行研究。利用发动机台架试验测量了GPF颗粒物再生反应速率,通过对数作图法拟合反应速率得到再生反应活化能,氧和颗粒物的反应活化能为81.6~91.4 kJ/mol,二氧化碳和颗粒物的反应活化能为159.2~218.9 kJ/mol。基于反应活化能计算了不同环境温度下颗粒物再生反应速率的修正系数;测量试验车低温冷启动阶段颗粒物累积速度,计算颗粒物排放的温度修正系数。以轻型车排放国六标准I型试验为基础,利用颗粒物再生反应速率和排放的温度修正系数对低温环境下GPF主动再生间隔里程进行了仿真。与寒区道路试验中获得的实际GPF颗粒物累积数据对比,仿真结果能较为准确地预测GPF在寒区不同工况下的颗粒物累积速度。试验和仿真结果均显示车辆低速行驶时GPF内颗粒物累积速度更易受低温环境影响。

     

  • 图  1  GPF再生台架试验布置

    Figure  1.  GPF regeneration dyno test setup

    图  2  试验车GPF再生反应速率

    Figure  2.  test vehicle GPF regeneration action rate

    图  3  再生反应过程式(4)的反应速率

    Figure  3.  Action rate of regeneration process (4)

    图  4  WLTC循环测试中GPF碳载量变化过程

    Figure  4.  GPF soot load variation during WLTC test

    图  5  GPF再生里程间隔仿真流程

    Figure  5.  GPF regeneration interval mileage simulation process

    图  6  试验车平衡碳载量

    Figure  6.  Test vehicle balance soot load

    图  7  GPF碳载量预测偏差

    Figure  7.  GPF soot load estimation error

    表  1  GPF与排气歧管端口距离

    Table  1.   Distance between GPF and exhaust manifold

    试验车序号车型GPF距排气歧管距离/mm发动机类型和排量/L
    1SUV1 230GDI,1.5
    2载客汽车660PFI,2.0
    3轻型货车760PFI,2.4
    4SUV810GDI,1.8
      注:GDI为燃油直喷;PFI为燃油进气道喷射。
    下载: 导出CSV

    表  2  GPF再生速率台架测试参数

    Table  2.   GPF regeneration rate dyno test parameters

    试验车序号转速/(r/min)IMEP/bar再生反应条件GPF床温/℃颗粒物再生量/g颗粒物流量/(mg/s)反应时间/s颗粒物再生反应速率/s−1
    13 0000DFCO514.50.80641.164×10−3
    13 0000DFCO613.54.20866.017×10−3
    13 0000DFCO761.73.50452.322×10−2
    12 0009.64λ=1521.11.40.028 1003 1007.233×10−5
    12 00011.53λ=1665.36.00.008 1602 8998.898×10−4
    13 50014.71λ=1784.86.50.129 0007564.801×10−3
    22 0000DFCO450.00.101651.060×10−4
    22 4000DFCO550.00.701676.958×10−4
    23 2000DFCO645.03.501604.423×10−3
    23 6000DFCO685.04.101558.197×10−3
    21 5009.17λ=1366.40.00.000 9534 2003.843×10−7
    22 0009.77λ=1456.90.30.001 0403 6001.427×10−5
    23 20012.19λ=1600.51.40.002 5602 0401.618×10−4
    23 60020.35λ=1754.14.30.059 6009001.467×10−3
    33 6000DFCO602.81.30261.099×10−2
    33 6000DFCO651.94.50662.476×10−2
    33 6000DFCO697.93.00567.517×10−2
    33 6000DFCO762.65.50361.384×10−2
    32 8009.89λ=1596.00.00.000 0181 7558.973×10−6
    33 60012.04λ=1717.00.30.000 3067106.767×10−5
    34 00014.32λ=1815.04.90.056 4006011.146×10−3
    42 4000DFCO592.40.60213.444×10−3
    42 4000DFCO644.11.10101.245×10−2
    42 8000DFCO719.52.30411.154×10−2
    42 8000DFCO736.02.50104.761×10−2
    41 6008.59λ=1465.30.10.001 7601 8002.216×10−6
    42 40012.15λ=1589.70.20.005 4202 4002.094×10−5
    42 40013.68λ=1669.22.20.006 1001 2003.719×10−4
    42 40014.37λ=1729.03.00.004 6901 2004.804×10−4
    下载: 导出CSV

    表  3  GPF再生反应的活化能

    Table  3.   GPF Regeneration action active energy

    试验车序号再生反应条件Ea/(kJ/mol)回归系数(R2
    1DFCO81.70.991 3
    λ=1110.80.999 6
    2DFCO83.20.944 5
    λ=1113.00.985 9
    3DFCO91.40.920 3
    λ=1169.40.952 7
    4DFCO81.60.809 0
    λ=1133.30.953 2
    下载: 导出CSV

    表  4  再生反应过程式(4)的活化能

    Table  4.   Active energy of regeneration process (4)

    试验车序号Ea/(kJ/mol)回归系数(R2
    1161.30.998 0
    2159.20.913 7
    3218.90.969 5
    4183.60.960 3
    下载: 导出CSV

    表  5  冷启动阶段颗粒物累积量

    Table  5.   Soot accumulation amount during cold engine start g 

    试验车序号−10 ℃−20 ℃−30 ℃
    10.100.160.32
    20.230.470.60
    30.150.530.80
    40.200.340.45
    下载: 导出CSV

    表  6  WLTC循环中GPF中颗粒物再生情况

    Table  6.   GPF regeneration status in WLTC test

    试验车序号测试循环GPF平均
    床温/℃
    颗粒物累
    积量/mg
    颗粒物再
    生量/mg
    DFCO再
    生占比/%
    1WLTC低速261.42.7080.00266.7
    WLTC中速375.91.5680.31970.9
    WLTC高速419.11.7120.90782.6
    WLTC超高速521.33.0678.37293.5
    WLTC374.99.0559.59592.1
    2WLTC低速446.626.21111.24886.2
    WLTC中速612.416.98225.11487.6
    WLTC高速674.616.90338.09388.4
    WLTC超高速772.922.46550.37290.4
    WLTC602.882.570124.84088.8
    3WLTC低速386.867.10225.14196.1
    WLTC中速502.217.13052.41993.8
    WLTC高速553.416.55856.03894.2
    WLTC超高速644.725.751121.48496.0
    WLTC503.1126.568255.08495.2
    4WLTC低速447.39.4972.03591.6
    WLTC中速566.88.9243.87187.1
    WLTC高速613.710.01510.22488.5
    WLTC超高速695.615.09923.69393.2
    WLTC562.543.53939.83191.3
    下载: 导出CSV

    表  7  WLTC循环DFCO统计

    Table  7.   DFCO statistics in WLTC test

    试验车序号DFCO总次数DFCO最后一次DFCO
    输氧量/gGPF平均床温/℃输氧量/gGPF平均床温/℃颗粒物再生占比/%
    132105.65418.229.87507.679.8
    258196.23654.141.58834.533.1
    378196.81507.832.52615.944.6
    476178.59591.444.85698.448.9
    下载: 导出CSV

    表  8  GPF主动再生间隔里程试验循环

    Table  8.   Test cycle for GPF active regeneration interval mileage verification

    测试循环循环描述行驶里
    程/km
    平均车速 /
    (km/h)
    循环1WLTC循环23.446.5
    循环2WLTC循环,无最后DFCO22.346.5
    循环3WLTC循环,低+中+高速循环15.136.8
    循环4WLTC循环,低+中速循环7.9427.9
    下载: 导出CSV

    表  9  道路试验中GPF的颗粒物累积

    Table  9.   GPF soot load accumulation in field driving test

    试验车
    序号
    城市拥堵道路城市综合道路城市高速道路
    行驶里
    程/km
    碳载量/g行驶里
    程/km
    碳载量/g行驶里
    程/km
    碳载量/g
    16001.61 1020.91 0060.0
    23460.4
    35994.01 1183.71 1620.0
    45450.99380.69980.1
    下载: 导出CSV
  • [1] 李红, 彭良, 毕方, 等.我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究,2019,32(10):1763-1778.

    LI H, PENG L, BI F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences,2019,32(10):1763-1778.
    [2] 李建峰, 王思儒, 郑冬勇, 等.超细颗粒物的污染行为与毒性效应研究[J]. 广东化工,2018,45(7):127-128.

    LI J F, WANG S R, ZHENG D Y, et al. Research on the pollution behavior and toxic effects of ultrafine particulate matter[J]. Guangdong Chemical Industry,2018,45(7):127-128.
    [3] YANG J C, ROTH P, DURBIN T D, et al. Gasoline particulate filters as an effective tool to reduce particulate and polycyclic aromatic hydrocarbon emissions from gasoline direct injection (GDI) vehicles: a case study with two GDI vehicles[J]. Environmental Science & Technology,2018,52(5):3275-3284.
    [4] 王军方, 尹航, 王宏丽, 等.轻型汽油车国六排放标准可行性研究[J]. 环境工程技术学报,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091

    WANG J F, YIN H, WANG H L, et al. Study on probability of compliance with China 6 standard for the emission from light duty gasoline vehicles[J]. Journal of Environmental Engineering Technology,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091
    [5] 龚少南. 汽油机颗粒捕集器的建模与再生控制[D]. 合肥: 合肥工业大学, 2020.
    [6] 范明哲, 张宾, ALEXANDER S, 等.汽油机GPF炭载量模型和再生策略的试验研究[J]. 内燃机与动力装置,2018,35(6):1-10.

    FAN M Z, ZHANG B, ALEXANDER S, et al. Experimental study on soot model and regeneration strategy of gasoline particulate filter[J]. Internal Combustion Engine & Powerplant,2018,35(6):1-10.
    [7] 环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法: GB 18352.6—2016[S]. 北京: 中国环境科学出版社, 2020.
    [8] RODRIGUEZ F. Investigations on the pollutant emissions of gasoline direct injection engines during cold-start[R]. Cambridge: Massachusetts Institute of Technology, 2016.
    [9] BOGARRA M, HERREROS J M, TSOLAKIS A, et al. Gasoline direct injection engine soot oxidation: fundamentals and determination of kinetic parameters[J]. Combustion and Flame,2018,190:177-187. doi: 10.1016/j.combustflame.2017.11.027
    [10] 姚塽, 汪侃, 张许扬, 等.汽油机颗粒捕集器再生平衡状态的仿真研究[J]. 内燃机工程,2021,42(3):93-99. doi: 10.13949/j.cnki.nrjgc.2021.03.014

    YAO S, WANG K, ZHANG X Y, et al. Simulation study on the regeneration equilibrium state of gasoline particulate filters[J]. Chinese Internal Combustion Engine Engineering,2021,42(3):93-99. doi: 10.13949/j.cnki.nrjgc.2021.03.014
    [11] BOGER T, ROSE D, NICOLIN P, et al. Oxidation of soot (Printex® U) in particulate filters operated on gasoline engines[J]. Emission Control Science and Technology,2015,1(1):49-63. doi: 10.1007/s40825-015-0011-1
    [12] PER N, DOMINIK R, FLORIAN K, et al. Modeling of the soot oxidation in gasoline particulate filters[J]. SAE International Journal of Engines, 2015, 8(3): 1253-1260.
    [13] LUO Y Q, ZHU L, FANG J H, et al. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel[J]. Applied Thermal Engineering,2015,89:647-655. doi: 10.1016/j.applthermaleng.2015.06.060
    [14] WANG C M, XU H M, HERREROS J M, et al. Fuel effect on particulate matter composition and soot oxidation in a direct-injection spark ignition (DISI) engine[J]. Energy & Fuels,2014,28(3):2003-2012.
    [15] WANG-HANSEN C, ERICSSON P, LUNDBERG B, et al. Characterization of particulate matter from direct injected gasoline engines[J]. Topics in Catalysis, 2013, 56(1/2/3/4/5/6/7/8): 446-451.
    [16] STANMORE B R, BRILHAC J F, GILOT P. The oxidation of soot: a review of experiments, mechanisms and models[J]. Carbon,2001,39(15):2247-2268. doi: 10.1016/S0008-6223(01)00109-9
    [17] DHRUVANG R, SIMONA O, ZORAN F, et al. Experimental investigation of soot accumulation and regeneration in a catalyzed gasoline particulate filter utilizing particulate quantification and gas speciation measurements[C]//ASME 2018 Internal Combustion Engine Fall Technical Conference. San Diego, 2018.
    [18] 南征, 李楠, 刘海涛, 等.不同载体汽油机颗粒捕集器再生性能试验研究[J]. 内燃机与动力装置,2021,38(6):29-35. doi: 10.19471/j.cnki.1673-6397.2021.06.005

    NAN Z, LI N, LIU H T, et al. Experimental study on regeneration performance of gasoline particulate filter with different carriers[J]. Internal Combustion Engine & Powerplant,2021,38(6):29-35. doi: 10.19471/j.cnki.1673-6397.2021.06.005
    [19] 崔亚男.汽油机颗粒捕集器台架标定方法研究[J]. 小型内燃机与车辆技术,2020,49(1):73-78.

    CUI Y N. Research on gasoline engine particulate filter bench calibration[J]. Small Internal Combustion Engine and Vehicle Technique,2020,49(1):73-78.
    [20] 李树宇.汽油颗粒捕集器(GPF)累碳及再生状态研究[J]. 柴油机设计与制造,2021,27(3):33-36.

    LI S Y. Study on Carbon accumulation and regeneration status of gasoline particle catcher[J]. Design and Manufacture of Diesel Engine,2021,27(3):33-36.
    [21] 陈龙, 李儒龙, 许瑞, 等. GPF再生消耗模型标定方法研究[C]//2020中国汽车工程学会年会论文集(3). 北京: 机械工业出版社, 2021: 838-842
    [22] 邹秀清. 不同环境下的汽油机GPF服务站再生研究[C]//2020中国汽车工程学会年会论文集(2). 北京: 机械工业出版社, 2021: 743-747
    [23] 气象局. 中国气象年鉴2019[M]. 北京: 中国气象出版社, 2020: 556-557.
    [24] YEHLIU K, VANDER WAL R L, ARMAS O, et al. Impact of fuel formulation on the nanostructure and reactivity of diesel soot[J]. Combustion and Flame,2012,159(12):3597-3606. doi: 10.1016/j.combustflame.2012.07.004
    [25] SEONG H, LEE K, CHOI S. Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine[C]//SAE Technical Paper Series. Warrendale: SAE International, 2013.
    [26] KAPTEIJN F, MEIJER R, MOULIJN J A, et al. On why do different carbons show different gasification rates: a transient isotopic CO2 gasification study[J]. Carbon,1994,32(7):1223-1231. doi: 10.1016/0008-6223(94)90106-6
    [27] ARUNACHALAM H, POZZATO G, HOFFMAN M A, et al. Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter[J]. Control Engineering Practice,2020,94:104199. doi: 10.1016/j.conengprac.2019.104199
    [28] 朱庆功, 刘俊女, 赵笑春, 等.北京市轻型汽油车蒸发排放总量评估[J]. 中国环境科学,2022,42(3):1066-1072. doi: 10.19674/j.cnki.issn1000-6923.2022.0070

    ZHU Q G, LIU J N, ZHAO X C, et al. Estimation of light-duty vehicles total evaporative emissions in Beijing[J]. China Environmental Science,2022,42(3):1066-1072. doi: 10.19674/j.cnki.issn1000-6923.2022.0070
    [29] 王军方, 丁焰, 王爱娟, 等.北京市机动车行驶工况研究[J]. 环境工程技术学报,2012,2(3):240-246.

    WANG J F, DING Y, WANG A J, et al. Study of vehicle driving cycle modes on road in Beijing[J]. Journal of Environmental Engineering Technology,2012,2(3):240-246.
    [30] MOSES-DEBUSK M, STOREY J M E, EIBL M A, et al. Nonuniform oxidation behavior of loaded gasoline particulate filters[J]. Emission Control Science and Technology,2020,6(3):301-314. □ doi: 10.1007/s40825-020-00166-y
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  126
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 录用日期:  2023-02-06
  • 修回日期:  2023-02-03

目录

    /

    返回文章
    返回