Effect of external admixtures on the growth and shear strength of Festuca arundinacea roots in vegetated concrete
-
摘要:
为揭示外掺料对植被混凝土根系生长和固土护坡的作用,以高羊茅(Festuca arundinacea)为研究材料,分别添加不同含量的椰纤维与粉煤灰构建植被混凝土,测定高羊茅地下部根系的生长特征及根土复合体的抗剪强度。结果表明,椰纤维掺量和粉煤灰掺量对高羊茅根系生长有显著影响。根系总根长、根系表面积、根平均直径及地下生物量均随椰纤维与粉煤灰掺量的增加呈先增后减的变化趋势,在椰纤维掺量为0.3%、粉煤灰掺量为2%时达到最大值,分别比未添加椰纤维的处理增加了31.39%、30.20%、30.57%、12.80%,分别比未添加粉煤灰的处理增加了42.17%、22.85%、16.48%、29.22%。椰纤维掺量和粉煤灰掺量对植被混凝土基材的抗剪强度也有显著影响,基材的抗剪强度均随着外掺量增加呈先增加后减少的变化,在椰纤维和粉煤灰掺量分别为0.3%和2%时达到最大值。综合评估显示,高羊茅根系在外掺椰纤维0.3%和粉煤灰2%的改良植被混凝土生长最好,植被混凝土的抗剪强度最高。
Abstract:In order to reveal the effects of external admixtures on the root growth and soil consolidation and slope protection of vegetation concrete, Festuca arundinacea was used as the research material, and different contents of coconut fiber and fly ash were added to construct vegetation concrete to measure the growth characteristics of Festuca arundinacea underground root system and the shear strength of root-soil complex. The results showed that the content of coconut fiber and fly ash had significant effects on the growth of Festuca arundinacea root system. The total root length, root surface area, root average diameter and underground biomass all increased first and then decreased with the increase of the content of coconut fiber and fly ash. When the content of coconut fiber was 0.3% and the content of fly ash was 2%, they reached the maximum value, which increased by 31.39%, 30.20%, 30.57% and 12.80%, respectively, compared with the treatment without coconut fiber. Compared with the treatment without fly ash, they increased by 42.17%, 22.85%, 16.48% and 29.22%, respectively. The coconut fiber content and fly ash content also had significant effects on the shear strength of the vegetated concrete substrate. The shear strength of the substrate increased first and then decreased with the increase of the addition content, and reached the maximum value when the content of coconut fiber and fly ash was 0.3% and 2%, respectively. The comprehensive evaluation showed that the improved vegetation concrete with Festuca arundinacea root system mixed with 0.3% of coconut fiber and 2% of fly ash had the best growth, and the shear strength of vegetation concrete was the highest.
-
Key words:
- vegetation concrete /
- coconut fiber /
- fly ash /
- root characteristics /
- shearing strength
-
表 1 植被混凝土基层各组分质量配比
Table 1. Mass ratio of each component of vegetated concrete base
g 处理组 种植土 水泥 有机物料 绿化添加剂 粉煤灰 椰纤维 F0Y0 100 8 6 4 0 0 F0Y2 100 8 6 4 0 0.2 F0Y3 100 8 6 4 0 0.3 F0Y4 100 8 6 4 0 0.4 F1Y0 100 8 6 4 1 0 F1Y2 100 8 6 4 1 0.2 F1Y3 100 8 6 4 1 0.3 F1Y4 100 8 6 4 1 0.4 F2Y0 100 8 6 4 2 0 F2Y2 100 8 6 4 2 0.2 F2Y3 100 8 6 4 2 0.3 F2Y4 100 8 6 4 2 0.4 F3Y0 100 8 6 4 3 0 F3Y2 100 8 6 4 3 0.2 F3Y3 100 8 6 4 3 0.3 F3Y4 100 8 6 4 3 0.4 注:表中为植被混凝土基层各组分质量配比,各组分以干土质量为参照。 表 2 外掺料对植物根系生长作用的多因素方差分析
Table 2. Multi-factor variance analysis of the effect of admixtures on plant root growth
方差来源 自由度 均方 F P 椰纤维 根系长度 3 99471.96 85.74 0.00 根系表面积 3 4186.77 57.09 0.00 根系平均直径 3 0.76 182.31 0.00 地下生物量 3 43885.15 1599.17 0.00 粉煤灰 根系长度 3 117100.17 100.93 0.00 根系表面积 3 1205.52 16.44 0.00 根系平均直径 3 0.18 42.24 0.00 地下生物量 3 403.84 89.48 0.00 椰纤维和粉煤灰 根系长度 9 6635.17 5.72 0.00 根系表面积 9 190.70 2.60 0.00 根系平均直径 9 0.03 7.89 0.00 地下生物量 9 33.54 7.43 0.00 表 3 外掺料对植被混凝土抗剪强度作用的多因子方差分析
Table 3. Multi-factor variance analysis of the effect of admixture on shear strength of vegetated concrete
方差来源 自由度 均方 F P 上层抗剪强度 3 1559.18 126.73 0.00 椰纤维 中层抗剪强度 3 6716.73 704.91 0.00 下层抗剪强度 3 3552.34 355.13 0.00 整体抗剪强度 3 3542.63 784.91 0.00 粉煤灰 上层抗剪强度 3 578.46 47.02 0.00 中层抗剪强度 3 542.75 56.96 0.00 下层抗剪强度 3 343.13 34.30 0.00 整体抗剪强度 3 403.84 89.48 0.00 椰纤维和粉煤灰 上层抗剪强度 9 44.28 3.60 0.00 中层抗剪强度 9 68.00 7.14 0.00 下层抗剪强度 9 49.69 4.97 0.00 整体抗剪强度 9 33.54 7.43 0.00 表 4 主成分分析载荷矩阵及贡献率
Table 4. Principal component analysis load matrix and contribution rate
指标 第一主成分 第二主成分 中层抗剪强度 0.945 −0.245 整体抗剪强度 0.942 −0.329 根系平均直径 0.931 0.103 下层抗剪强度 0.914 −0.278 根系表面积 0.876 0.316 根系长度 0.857 0.443 上层抗剪强度 0.812 −0.487 地下生物量 0.786 0.558 特征值 6.261 1.101 主成分贡献率/% 78.261 13.763 累计贡献率/% 78.261 92.024 表 5 处理组合排位前5的主成分得分
Table 5. Principal component scores of top 5 treatment combinations
处理 第一主成分 第二主成分 综合 得分 排名 得分 排名 得分 排名 F2Y3 4.83 1 0.35 7 3.82 1 F1Y3 2.91 2 −0.73 11 2.97 2 F2Y2 2.40 3 0.81 8 2.10 3 F3Y3 2.22 4 −0.14 5 2.07 4 F1Y2 1.55 5 −0.64 9 1.54 5 -
[1] 马振锋, 彭骏, 高文良, 等.近40年西南地区的气候变化事实[J]. 高原气象,2006(4):633-642.MA Z F, PENG J, GAO W L, et al. Climate variation of Southwest China in recent 40 years[J]. Plateau Meteorology,2006(4):633-642. [2] 徐裕华. 西南气候[M]. 北京: 气象出版社, 1991: 1-5. [3] 刘国华.西南生态安全格局形成机制及演变机理[J]. 生态学报,2016,36(22):7088-7091.LIU G H. Formation and evolution mechanism of ecological security pattern in Southwest China[J]. Acta Ecologica Sinica,2016,36(22):7088-7091. [4] 董瑞琨, 许兆义, 杨成永.青藏高原冻融侵蚀动力特征研究[J]. 水土保持学报,2000(4):12-16,42.DONG R K, XU Z Y, YANG C Y. Dynamic and characteristic of freezing-thawing erosion on Qinghai-Tibet Plateau[J]. Journal of Soil and Water Conservation,2000(4):12-16,42. [5] 叶帅华, 时轶磊.降雨入渗条件下多级黄土高边坡稳定性分析[J]. 工程地质学报,2018,26(6):1648-1656.YE S H, SHI Y L. Stability analysis of multi-stage high slope with loess under rainfall infiltration[J]. Journal of Engineering Geology,2018,26(6):1648-1656. [6] 屠义伟.复杂地质条件下山区公路边坡稳定性评价及加固方法设计[J]. 公路工程,2018,43(1):169-174.TU Y W. Stability evaluation and reinforcement method design of mountain highway slope under complex geological conditions[J]. Highway Engineering,2018,43(1):169-174. [7] LI Y, QI S, LIANG B, et al. Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan- Guizhou Plateau (China) using the revised universal soil loss equation[J]. Natural Hazards and Earth System Sciences,2019,19(4):757-774. doi: 10.5194/nhess-19-757-2019 [8] MARTÍNEZ-RUIZ C, FERNANDEZ-SANTOS B, PUTWAIN P D, et al. Natural and man-induced revegetation on mining wastes: changes in the floristic composition during early succession[J]. Ecological Engineering,2007,30(3):286-294. doi: 10.1016/j.ecoleng.2007.01.014 [9] TSIGE D, SENADHEERA S, TALEMA A. Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling[J]. Geosciences,2019,10(1):19. doi: 10.3390/geosciences10010019 [10] 夏振尧, 许文年, 王乐华.植被混凝土生态护坡基材初期强度特性研究[J]. 岩土力学,2011,32(6):1719-1724.XIA Z Y, XU W N, WANG L H. Research on characteristics of early strength of ecological slope-protected base material of vegetation-growing concrete[J]. Rock and Soil Mechanics,2011,32(6):1719-1724. [11] 高文涛, 刘福胜, 韦梅, 等.新型抗冻植被混凝土配比及性能研究[J]. 新型建筑材料,2016,43(11):30-33.GAO W T, LIU F S, WEI M, et al. Study on new antifreeze vegetation concrete mix ratio and performance[J]. New Building Materials,2016,43(11):30-33. [12] 赵亮, 唐泽军, 刘芳.粉煤灰改良沙质土壤水分物理性质的室内试验[J]. 环境科学学报,2009,29(9):1951-1957.ZHAO L, TANG Z J, LIU F. Laboratory tests of fly ash as asandy soil amendment and its effects on soil water[J]. Acta Scientiae Circumstantiae,2009,29(9):1951-1957. [13] 张笑峰, 张艳美, 刘锦程, 等.纤维与粉煤灰改良粉土的正交试验分析[J]. 水利与建筑工程学报,2019,17(1):36-40.ZHANG X F, ZHANG Y M, LIU J C, et al. Orthogonal test analysis of improved silt with fiber and fly ash[J]. Journal of Water Resources and Architectural Engineering,2019,17(1):36-40. [14] 赵步, 李杨, 孙明星, 等. 水泥-电力行业的产业共生网络构建及区域案例研究[J]. 环境科学研究, 2019, 32(2): 190-196.ZHAO B, LI Y, SUN M X, et al. Industrial symbiosis network construction between cement and coal-fired power industries and the case study[J]. Research of Environmental Sciences [15] 王建东, 吕萌, 章玉容, 等.粉煤灰混凝土渗透相关性的试验研究[J]. 浙江工业大学学报,2020,48(2):217-221.WANG J D, LÜ M, ZHANG Y R, et al. Research on correlation of permeability of fly ash concrete[J]. Journal of Zhejiang University of Technology,2020,48(2):217-221. [16] ZHANG J Z, BIAN F, ZHANG Y R, et al. Effect of pore structures on gas permeability and chloride diffusivity of concre[J]. Construction and Building Materials,2018,163:402-413. doi: 10.1016/j.conbuildmat.2017.12.111 [17] 董焕焕, 赵红, 邓俊双, 等.植被恢复方式对红壤丘陵区弃土场植被生长指标与土壤理化性质的影响[J]. 环境工程技术学报,2022,12(1):145-152.DONG H H, ZHAO H, DENG J S, et al. Effects of vegetation restoration methods on vegetation growth indexes and soil physical and chemical properties of spoil ground in red-soil hilly region[J]. Journal of Environmental Engineering Technology,2022,12(1):145-152. [18] HOU T S, XU G L, SHEN Y J, et al. Formation mechanism and stability analysis of the Houba expansive soil landslide[J]. Engineering Geology,2013,161:34-43. doi: 10.1016/j.enggeo.2013.04.010 [19] CHEN F Q, ZHANG J X, ZHANG M, et al. Effect of Cynodon dactylon community on the conservation and reinforcement of riparian shallow soil in the Three Gorges Reservoir area[J]. Ecological Processes,2015,4(1):1-8. doi: 10.1186/s13717-014-0026-5 [20] 胡小庆, 洪柳, 徐光黎, 等.纤维含量及长度对纤维加筋土强度的影响研究[J]. 安全与环境工程,2015,22(2):139-143. doi: 10.13578/j.cnki.issn.1671-1556.2015.02.027HU X Q, HONG L, XU G L, et al. Impacts of fiber content and fiber length on the strength and deformation of fiber reinforced soil[J]. Safety and Environmental Engineering,2015,22(2):139-143. doi: 10.13578/j.cnki.issn.1671-1556.2015.02.027 [21] 杨晶磊.粉煤灰改良膨胀土力学特性试验[J]. 粉煤灰综合利用,2018(1):44-46. doi: 10.3969/j.issn.1005-8249.2018.01.012YANG J L. Experimental study on mechanical properties of expansive soil with fly ash[J]. Fly Ash Comprehensive Utilization,2018(1):44-46. doi: 10.3969/j.issn.1005-8249.2018.01.012 [22] 刘黎明, 宋岩松, 钟斌, 房士栋, 等.植被混凝土生态修复技术研究进展[J]. 环境工程技术学报,2022,12(3):916-927.LIU L M, SONG Y S, ZHONG B, et al. Research progress on ecological restoration technology of vegetation concrete[J]. Journal of Environmental Engineering Technology,2022,12(3):916-927. [23] WANG L, GUO F X, YANG H M, et al. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis[J]. Fractals,2021,29(2):2140002. doi: 10.1142/S0218348X21400028 [24] 师海然. 喷播绿化木纤维基质材料配方的开发研究[D]. 北京: 北京林业大学, 2019. [25] TRAN N P, GUNASEKARA C, LAW D W, et al. Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste[J]. Journal of Sustainable Cement-Based Materials,2022,11(1):41-61. [26] 崔征, 陈国新, 祝烨然, 等.外加剂对护坡型植生混凝土影响的研究进展[J]. 混凝土,2019(2):124-127.CUI Z, CHEN G X, ZHU Y R, et al. Research progress on the influence of admixture to the planting concrete used for slope protection[J]. Concrete,2019(2):124-127. [27] 张剑波, 吴勇生, 孙可伟, 等.再生骨料混凝土孔隙结构的试验研究[J]. 硅酸盐通报,2011,30(1):239-244. doi: 10.16552/j.cnki.issn1001-1625.2011.01.018ZHANG J B, WU Y S, SUN K W, et al. Experiment and study on pore structure of recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2011,30(1):239-244. doi: 10.16552/j.cnki.issn1001-1625.2011.01.018 [28] ZAREEI S A, AMERI F, BAHRAMI N, et al. Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: mechanical, durability, and microstructural properties[J]. Journal of Building Engineering,2019,26:100914. doi: 10.1016/j.jobe.2019.100914 [29] 胡建军. 掺粉煤灰和矿渣粉混凝土的碳化行为及其影响因素的研究[D]. 北京: 清华大学, 2010. [30] 张小平, 施斌.加筋纤维膨胀土的试验研究[J]. 长江科学院院报,2008(4):60-62. doi: 10.3969/j.issn.1001-5485.2008.04.016ZHANG X P, SHI B. Experimental study on reinforced fiber expansive soil[J]. Journal of Yangtze River Scientific Research Institute,2008(4):60-62. doi: 10.3969/j.issn.1001-5485.2008.04.016 [31] WELKER A L, JOSTEN N. Interface friction of a geomembrane with a fiber reinforced soil[M]//Slopes and retaining structures under seismic and static conditions. 2005: 1-8. [32] MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering,2004,130(8):891-895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891) [33] 王东星, 高向雲, 杜怡莹, 等.活性MgO-粉煤灰固化黄土剪切特性试验研究[J]. 防灾减灾工程学报,2018,38(5):822-829. doi: 10.13409/j.cnki.jdpme.2018.05.008WANG D X, GAO X Y, D Y Y, et al. Experimental investigation on shear properties of reactive MgO-fly ash stabilized loess[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(5):822-829. doi: 10.13409/j.cnki.jdpme.2018.05.008 [34] 钟文乐, 李政启, 朱慈勉, 等.无砂多孔生态混凝土力学和植生性能试验研究[J]. 混凝土,2012(6):131-135. doi: 10.3969/j.issn.1002-3550.2012.06.040ZHONG W L, LI Z Q, ZHU C M, et al. Experimental study on mechanical and planting properties of porous ecological concrete[J]. Concrete,2012(6):131-135. doi: 10.3969/j.issn.1002-3550.2012.06.040 [35] YE C, GUO Z L, LI Z X, et al. The effect of Bahiagrass roots on soil erosion resistance of aquults in subtropical China[J]. Geomorphology,2017,285:82-93. ⊕ doi: 10.1016/j.geomorph.2017.02.003