留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型钢渣基免烧陶粒滤料的制备及其性能研究

沈鑫宇 闫肖雅 林杨 徐悦清 刘荣

沈鑫宇,闫肖雅,林杨,等.一种新型钢渣基免烧陶粒滤料的制备及其性能研究[J].环境工程技术学报,2023,13(4):1525-1534 doi: 10.12153/j.issn.1674-991X.20220709
引用本文: 沈鑫宇,闫肖雅,林杨,等.一种新型钢渣基免烧陶粒滤料的制备及其性能研究[J].环境工程技术学报,2023,13(4):1525-1534 doi: 10.12153/j.issn.1674-991X.20220709
SHEN X Y,YAN X Y,LIN Y,et al.Preparation and performance study of a new type of steel slag-based non-fired ceramsite filter media[J].Journal of Environmental Engineering Technology,2023,13(4):1525-1534 doi: 10.12153/j.issn.1674-991X.20220709
Citation: SHEN X Y,YAN X Y,LIN Y,et al.Preparation and performance study of a new type of steel slag-based non-fired ceramsite filter media[J].Journal of Environmental Engineering Technology,2023,13(4):1525-1534 doi: 10.12153/j.issn.1674-991X.20220709

一种新型钢渣基免烧陶粒滤料的制备及其性能研究

doi: 10.12153/j.issn.1674-991X.20220709
基金项目: 国家重点研发计划项目(2018YFD1101001)
详细信息
    作者简介:

    沈鑫宇(1997—),男,硕士,研究方向为固体废物资源化利用,821744971@qq.com

    通讯作者:

    刘荣(1965—),女,教授,博士,研究方向为固体废物资源化利用,liurongnjnu@123.com

  • 中图分类号: X705

Preparation and performance study of a new type of steel slag-based non-fired ceramsite filter media

  • 摘要:

    采用免烧工艺以钢渣为主要原料制备陶粒滤料,并用其替代高炉底滤法水冲渣工艺过滤池中的鹅卵石,为钢渣资源化利用提供新思路。在确定基础配比(钢渣:水泥为2.0)后,选取石膏和水玻璃作为激发剂研究其对滤料性能的影响。最终选取石膏添加量为8%作为滤料的最优制备参数,此时滤料颗粒强度为4.14 MPa,1 h吸水率为9.05%,颗粒密度为1.49 kg/m3,25次抗冷热冲击后强度降幅仅为3%,过滤速度为5.92 mm/s。借助X射线衍射仪(XRD)与扫描电子显微镜(SEM)对滤料进行物相组成和微观形貌的表征,发现所使用的激发剂可促进钢渣中主要矿物C3S和C2S的水化反应,生成C—S—H类凝胶,这些水化产物相互交织黏结,使滤料内部孔隙率降低,滤料颗粒强度和25次抗冷热冲击性能不断提升。该系列滤料同时也可作为建筑陶粒应用于建材骨料等。

     

  • 图  1  钢渣的物相组成分析

    Figure  1.  Analysis of phase composition of steel slag

    图  2  钢渣基免烧滤料制备工艺流程

    Figure  2.  Process flow chart of preparation of steel slag-based non-burning filter balls

    图  3  钢渣基免烧滤料照片

    Figure  3.  Photo of steel slag-based non-burning filter balls

    图  4  钢渣∶水泥对滤料物理性能的影响

    Figure  4.  Effects of different steel slag/cement ratios on the physical properties of filter balls

    图  5  钢渣:水泥对滤料物相组成的影响

    Figure  5.  Effects of different steel slag/cement ratios on the phase composition of filter balls

    图  6  钢渣:水泥对滤料微观形貌结构的影响

    Figure  6.  Effects of different steel slag/cement ratios on the microstructure of filter balls

    图  7  石膏添加量对滤料物理性能的影响

    Figure  7.  Effects of different gypsum contents on the physical properties of filter balls

    图  8  石膏添加量对滤料物相组成的影响

    Figure  8.  Effects of different gypsum contents on the phase composition of filter balls

    图  9  石膏添加量对滤料微观形貌结构的影响

    Figure  9.  Effects of different gypsum contents on the microstructure of filter balls

    图  10  水玻璃添加量对滤料物理性能的影响

    Figure  10.  Effects of different sodium silicate contents on the physical properties of filter balls

    图  11  水玻璃添加量对滤料物相组成的影响

    Figure  11.  Effects of different sodium silicate contents on the phase composition of filter balls

    图  12  水玻璃添加量对滤料微观形貌结构的影响

    Figure  12.  Effects of sodium silicate contents on the microstructure of filter balls

    图  13  过滤装置示意

    Figure  13.  Schematic diagram of filter device

    图  14  物料产生咬合作用示意

    Figure  14.  Schematic diagram of the bite effect of the material

    图  15  激发剂激发作用示意

    Figure  15.  Schematic diagram of the excitation effect of the activator

    表  1  钢渣的主要化学成分分析

    Table  1.   Analysis of the main chemical composition of steel slag % 

    CaOFe2O3SiO2MgOMnOAl2O3P2O5TiO2SO3Cr2O3
    47.9424.5110.697.563.242.251.750.8370.3740.328
    下载: 导出CSV
  • [1] 高本恒, 郝以党, 张淑苓, 等.钢渣综合利用现状及发展趋势[J]. 环境工程,2016,34(增刊 1):776-779.

    GAO B H, HAO Y D, ZHANG S L, et al. Development trend and comprehensive utilization of steel slag[J]. Environmental Engineering,2016,34(Suppl 1):776-779.
    [2] 高陟, 任鑫明, 马北越.钢渣高附加值利用研究现状[J]. 耐火与石灰,2021,46(4):13-17.

    GAO Z, REN X M, MA B Y. Research status of high value-added utilization of steel slag[J]. Refractories & Lime,2021,46(4):13-17.
    [3] ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production,2017,156:50-61. doi: 10.1016/j.jclepro.2017.04.029
    [4] 张翔宇, 章骅, 何品晶, 等.不锈钢渣资源利用特性与重金属污染风险[J]. 环境科学研究,2008,21(4):33-37.

    ZHANG X Y, ZHANG H, HE P J, et al. Beneficial reuse of stainless steel slag and its heavy metals pollution risk[J]. Research of Environmental Sciences,2008,21(4):33-37.
    [5] MOTZ H, GEISELER J. Products of steel slags an opportunity to save natural resources[J]. Waste Management,2001,21(3):285-293. doi: 10.1016/S0956-053X(00)00102-1
    [6] 陈晓, 贾晓梅, 侯文华, 等.人工湿地系统中填充基质对磷的吸附能力[J]. 环境科学研究,2009,22(9):1068-1073.

    CHEN X, JIA X M, HOU W H, et al. Phosphorus adsorption capacity of filter media in constructed wetlands[J]. Research of Environmental Sciences,2009,22(9):1068-1073.
    [7] 奚道国, 张瑞斌, 周乃, 等.铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070

    XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its application in constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070
    [8] 朱金伟, 王凡, 任洪岩, 等.钢渣作为湿法脱硫吸收剂的试验研究[J]. 环境工程技术学报,2011,1(3):205-209.

    ZHU J W, WANG F, REN H Y, et al. Experimental study on steel slag used as wet flue gas desulfurization absorbent[J]. Journal of Environmental Engineering Technology,2011,1(3):205-209.
    [9] 陈仕国.浸没式水处理固废陶粒滤料制备技术研究综述[J]. 工程技术研究,2021,6(8):5-6.
    [10] 梁标, 蔡德所, 莫崇勋.利用底泥制备烧胀陶粒技术的研究进展[J]. 功能材料,2020,51(11):11017-11024.

    LIANG B, CAI D S, MO C X. Technology of manufacturing sintering-expanded ceramsite from sediments[J]. Journal of Functional Materials,2020,51(11):11017-11024.
    [11] 白彩云, 张崇淼.改性钢渣陶粒的制备及其除磷性能研究[J]. 水处理技术,2020,46(7):63-66.

    BAI C Y, ZHANG C M. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment,2020,46(7):63-66.
    [12] 米晓凡, 范海宏, 贾璐卫, 等.烧结温度对钢渣陶粒结构及性能的影响[J]. 非金属矿,2021,44(1):36-39.

    MI X F, FAN H H, JIA L W, et al. Effect of sintering temperature on structure and properties of ceramsite prepared from steel slag[J]. Non-Metallic Mines,2021,44(1):36-39.
    [13] 李鹏冠. 钢渣体积稳定性及水化过程强化研究[D]. 石家庄: 河北科技大学, 2016.
    [14] PAKBAZ M S, ALIPOUR R. Influence of cement addition on the geotechnical properties of an Iranian clay[J]. Applied Clay Science,2012,67/68:1-4. doi: 10.1016/j.clay.2012.07.006
    [15] 朱哲誉, 王中平, 周玥, 等.硅酸盐水泥水化产物微纳结构的原位研究[J]. 硅酸盐学报,2021,49(8):1699-1705.

    ZHU Z Y, WANG Z P, ZHOU Y, et al. In-situ study on micro-nano structure of Portland cement hydration products[J]. Journal of the Chinese Ceramic Society,2021,49(8):1699-1705.
    [16] 汪坤, 李颖, 张广田.含钢渣的低熟料混凝土耐久性及水化机理研究[J]. 中国冶金,2020,30(10):92-97.

    WANG K, LI Y, ZHANG G T. Study on durability and hydration mechanism of low clinker concrete containing steel slag[J]. China Metallurgy,2020,30(10):92-97.
    [17] BERGOLD S T, GOETZ-NEUNHOEFFER F, NEUBAUER J. Quantitative analysis of C-S-H in hydrating alite pastes by in situ XRD[J]. Cement and Concrete Research,2013,53:119-126. doi: 10.1016/j.cemconres.2013.06.001
    [18] MONSHI A, FOROUGHI M, MONSHI M. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD[J]. World Journal of Nano Science and Engineering,2012,2:154-160. doi: 10.4236/wjnse.2012.23020
    [19] TAMANNA N, SUTAN N M, YAKUB I, et al. Influence of mortar incorporating silica based waste material on the formation of C-S-H and mechanical strength properties[J]. Applied Mechanics & Materials,2015,695:647-650.
    [20] 侯新凯, 徐德龙, 薛博, 等.钢渣引起水泥体积安定性问题的探讨[J]. 建筑材料学报,2012,15(5):588-595.

    HOU X K, XU D L, XUE B, et al. Study on volume stability problems of cement caused by steel slag[J]. Journal of Building Materials,2012,15(5):588-595.
    [21] 胡宏泰, 朱祖培, 陆纯煊. 水泥的制造和应用[M]. 济南: 山东科学技术出版社, 1994.
    [22] 杜君, 刘家祥.石膏与硅灰对钢渣水泥基胶凝材料复合改性效应[J]. 土木建筑与环境工程,2013,35(3):131-136.

    DU J, LIU J X. Compound effect of dihydrate gypsum and silica fume on strength of steel slag-cement binding materials[J]. Journal of Civil, Architectural & Environmental Engineering,2013,35(3):131-136.
    [23] 李颖, 吴保华, 倪文, 等.矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版),2020,41(4):581-586.

    LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science),2020,41(4):581-586.
    [24] 徐东, 倪文, 汪群慧, 等.碱渣复合胶凝材料制备无熟料混凝土[J]. 哈尔滨工业大学学报,2020,52(8):151-160.

    XU D, NI W, WANG Q H, et al. Preparation of clinker-free concrete by using soda residue composite cementitious material[J]. Journal of Harbin Institute of Technology,2020,52(8):151-160.
    [25] 黄天勇, 章银祥, 陈旭峰.石膏掺量对三元胶凝体系水泥基自流平砂浆的影响[J]. 硅酸盐通报,2019,38(6):1738-1742.

    HUANG T Y, ZHANG Y X, CHEN X F. Effect of gypsum contents on cement-based self-leveling mortar in ternary binder system[J]. Bulletin of the Chinese Ceramic Society,2019,38(6):1738-1742.
    [26] 易龙生, 康路良, 齐丽娜, 等.不同激发剂对免烧钢渣陶粒抗压强度的影响[J]. 金属矿山,2015(1):166-170.

    YI L S, KANG L L, QI L N, et al. Effect of different activators on compressive strength of non-sintered steel slag ceramsite[J]. Metal Mine,2015(1):166-170.
    [27] SUN J W, ZHANG Z Q, ZHUANG S Y, et al. Hydration properties and microstructure characteristics of alkali-activated steel slag[J]. Construction and Building Materials,2020,241:118141. doi: 10.1016/j.conbuildmat.2020.118141
    [28] 王瑞兰, 蒋文莉, 李庚英.化学激发剂对钢渣体系的激发效果研究[J]. 水科学与工程技术,2018(4):12-15.

    WANG R L, JIANG W L, LI G Y. Study on the excitation effect of chemical activator on steel slag system[J]. Water Sciences and Engineering Technology,2018(4):12-15.
    [29] 唐正彦, 王建国, 董涛.激发剂对钢渣早期活性影响的研究[J]. 粉煤灰,2013,25(1):18-20.

    TANG Z Y, WANG J G, DONG T. Research on effect of activator on early activity of steel slag[J]. Coal Ash,2013,25(1):18-20.
    [30] 胡曙光, 韦江雄, 丁庆军.水玻璃对钢渣水泥激发机理的研究[J]. 水泥工程,2001(5):4-6. doi: 10.3969/j.issn.1007-0389.2001.05.002

    HU S G, WEI J X, DING Q J. Research on excitation principle of sodium silicate to steel slag cement[J]. Cement Engineering,2001(5):4-6. doi: 10.3969/j.issn.1007-0389.2001.05.002
    [31] 魏瑞丽, 李辉, 张婕.钢渣活性激发的机理及研究进展[J]. 材料导报,2014,28(21):105-108.

    WEI R L, LI H, ZHANG J. Mechanism and recent development of steel slag activating activity[J]. Materials Review,2014,28(21):105-108.
    [32] 段思宇. 钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究[D]. 太原: 山西大学, 2020.
    [33] 董龙瑞. 钢渣少熟料水泥的制备及在混凝土中的应用[D]. 包头: 内蒙古科技大学, 2020.
    [34] 宋月, 林娜, 马彦伟, 等.复合激发剂对钢渣-矿渣基胶凝材料性能的影响[J]. 安徽工业大学学报(自然科学版),2019,36(1):24-28.

    SONG Y, LIN N, MA Y W, et al. Influence of composite activator on the properties of steel slag and slag based cementing materials[J]. Journal of Anhui University of Technology (Natural Science),2019,36(1):24-28.
    [35] SUN J W, CHEN Z H. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag[J]. Journal of Thermal Analysis and Calorimetry,2019,138(1):47-56. doi: 10.1007/s10973-019-08146-3
    [36] 许世斌. 钢渣基复合掺合料制备及应用研究[D]. 昆明: 昆明理工大学, 2021.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  173
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 录用日期:  2023-03-22
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回