Preparation and performance study of a new type of steel slag-based non-fired ceramsite filter media
-
摘要:
采用免烧工艺以钢渣为主要原料制备陶粒滤料,并用其替代高炉底滤法水冲渣工艺过滤池中的鹅卵石,为钢渣资源化利用提供新思路。在确定基础配比(钢渣:水泥为2.0)后,选取石膏和水玻璃作为激发剂研究其对滤料性能的影响。最终选取石膏添加量为8%作为滤料的最优制备参数,此时滤料颗粒强度为4.14 MPa,1 h吸水率为9.05%,颗粒密度为1.49 kg/m3,25次抗冷热冲击后强度降幅仅为3%,过滤速度为5.92 mm/s。借助X射线衍射仪(XRD)与扫描电子显微镜(SEM)对滤料进行物相组成和微观形貌的表征,发现所使用的激发剂可促进钢渣中主要矿物C3S和C2S的水化反应,生成C—S—H类凝胶,这些水化产物相互交织黏结,使滤料内部孔隙率降低,滤料颗粒强度和25次抗冷热冲击性能不断提升。该系列滤料同时也可作为建筑陶粒应用于建材骨料等。
Abstract:The non-burning process was adopted to prepare ceramic granule filter media with steel slag as the main raw material. It was used to replace the cobblestone in the filter tank of the blast furnace bottom filtration water flushing slag process, providing a new idea for the resource utilization of steel slag. After determining the base ratio of steel slag to cement of 2.0, gypsum and water glass were selected as activators to study their impact on the performance of the filter media. Finally, an 8% gypsum addition was selected as the optimal preparation parameter for the filter material. At this time, the particle strength of filter media was increased to 4.14 MPa, the 1 h water absorption rate was 9.05%, the particle density was 1.49 g/cm3, the decrease in strength was only 3% after 25 times of cold and hot impacts, and the filtration speed was 5.92 mm/s. With the help of X-ray diffractometer (XRD) and scanning electron microscope (SEM), the physical composition and microscopic morphology of the filter media were characterized. It was found that the exciter used could promote the hydration reaction of the main minerals C3S and C2S in the steel slag to produce C—S—H type gels, and these hydration products intertwined and bonded to reduce the porosity inside the filter media and improve the filter media particle strength and 25 times of cold and hot impacts continuously. This series of filter media could also be used as construction ceramic pellets for building materials, such as aggregate.
-
Key words:
- steel slag /
- non-fired filter media /
- activators /
- hydration reaction /
- C—S—H
-
表 1 钢渣的主要化学成分分析
Table 1. Analysis of the main chemical composition of steel slag
% CaO Fe2O3 SiO2 MgO MnO Al2O3 P2O5 TiO2 SO3 Cr2O3 47.94 24.51 10.69 7.56 3.24 2.25 1.75 0.837 0.374 0.328 -
[1] 高本恒, 郝以党, 张淑苓, 等.钢渣综合利用现状及发展趋势[J]. 环境工程,2016,34(增刊 1):776-779.GAO B H, HAO Y D, ZHANG S L, et al. Development trend and comprehensive utilization of steel slag[J]. Environmental Engineering,2016,34(Suppl 1):776-779. [2] 高陟, 任鑫明, 马北越.钢渣高附加值利用研究现状[J]. 耐火与石灰,2021,46(4):13-17.GAO Z, REN X M, MA B Y. Research status of high value-added utilization of steel slag[J]. Refractories & Lime,2021,46(4):13-17. [3] ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production,2017,156:50-61. doi: 10.1016/j.jclepro.2017.04.029 [4] 张翔宇, 章骅, 何品晶, 等.不锈钢渣资源利用特性与重金属污染风险[J]. 环境科学研究,2008,21(4):33-37.ZHANG X Y, ZHANG H, HE P J, et al. Beneficial reuse of stainless steel slag and its heavy metals pollution risk[J]. Research of Environmental Sciences,2008,21(4):33-37. [5] MOTZ H, GEISELER J. Products of steel slags an opportunity to save natural resources[J]. Waste Management,2001,21(3):285-293. doi: 10.1016/S0956-053X(00)00102-1 [6] 陈晓, 贾晓梅, 侯文华, 等.人工湿地系统中填充基质对磷的吸附能力[J]. 环境科学研究,2009,22(9):1068-1073.CHEN X, JIA X M, HOU W H, et al. Phosphorus adsorption capacity of filter media in constructed wetlands[J]. Research of Environmental Sciences,2009,22(9):1068-1073. [7] 奚道国, 张瑞斌, 周乃, 等.铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its application in constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070 [8] 朱金伟, 王凡, 任洪岩, 等.钢渣作为湿法脱硫吸收剂的试验研究[J]. 环境工程技术学报,2011,1(3):205-209.ZHU J W, WANG F, REN H Y, et al. Experimental study on steel slag used as wet flue gas desulfurization absorbent[J]. Journal of Environmental Engineering Technology,2011,1(3):205-209. [9] 陈仕国.浸没式水处理固废陶粒滤料制备技术研究综述[J]. 工程技术研究,2021,6(8):5-6. [10] 梁标, 蔡德所, 莫崇勋.利用底泥制备烧胀陶粒技术的研究进展[J]. 功能材料,2020,51(11):11017-11024.LIANG B, CAI D S, MO C X. Technology of manufacturing sintering-expanded ceramsite from sediments[J]. Journal of Functional Materials,2020,51(11):11017-11024. [11] 白彩云, 张崇淼.改性钢渣陶粒的制备及其除磷性能研究[J]. 水处理技术,2020,46(7):63-66.BAI C Y, ZHANG C M. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment,2020,46(7):63-66. [12] 米晓凡, 范海宏, 贾璐卫, 等.烧结温度对钢渣陶粒结构及性能的影响[J]. 非金属矿,2021,44(1):36-39.MI X F, FAN H H, JIA L W, et al. Effect of sintering temperature on structure and properties of ceramsite prepared from steel slag[J]. Non-Metallic Mines,2021,44(1):36-39. [13] 李鹏冠. 钢渣体积稳定性及水化过程强化研究[D]. 石家庄: 河北科技大学, 2016. [14] PAKBAZ M S, ALIPOUR R. Influence of cement addition on the geotechnical properties of an Iranian clay[J]. Applied Clay Science,2012,67/68:1-4. doi: 10.1016/j.clay.2012.07.006 [15] 朱哲誉, 王中平, 周玥, 等.硅酸盐水泥水化产物微纳结构的原位研究[J]. 硅酸盐学报,2021,49(8):1699-1705.ZHU Z Y, WANG Z P, ZHOU Y, et al. In-situ study on micro-nano structure of Portland cement hydration products[J]. Journal of the Chinese Ceramic Society,2021,49(8):1699-1705. [16] 汪坤, 李颖, 张广田.含钢渣的低熟料混凝土耐久性及水化机理研究[J]. 中国冶金,2020,30(10):92-97.WANG K, LI Y, ZHANG G T. Study on durability and hydration mechanism of low clinker concrete containing steel slag[J]. China Metallurgy,2020,30(10):92-97. [17] BERGOLD S T, GOETZ-NEUNHOEFFER F, NEUBAUER J. Quantitative analysis of C-S-H in hydrating alite pastes by in situ XRD[J]. Cement and Concrete Research,2013,53:119-126. doi: 10.1016/j.cemconres.2013.06.001 [18] MONSHI A, FOROUGHI M, MONSHI M. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD[J]. World Journal of Nano Science and Engineering,2012,2:154-160. doi: 10.4236/wjnse.2012.23020 [19] TAMANNA N, SUTAN N M, YAKUB I, et al. Influence of mortar incorporating silica based waste material on the formation of C-S-H and mechanical strength properties[J]. Applied Mechanics & Materials,2015,695:647-650. [20] 侯新凯, 徐德龙, 薛博, 等.钢渣引起水泥体积安定性问题的探讨[J]. 建筑材料学报,2012,15(5):588-595.HOU X K, XU D L, XUE B, et al. Study on volume stability problems of cement caused by steel slag[J]. Journal of Building Materials,2012,15(5):588-595. [21] 胡宏泰, 朱祖培, 陆纯煊. 水泥的制造和应用[M]. 济南: 山东科学技术出版社, 1994. [22] 杜君, 刘家祥.石膏与硅灰对钢渣水泥基胶凝材料复合改性效应[J]. 土木建筑与环境工程,2013,35(3):131-136.DU J, LIU J X. Compound effect of dihydrate gypsum and silica fume on strength of steel slag-cement binding materials[J]. Journal of Civil, Architectural & Environmental Engineering,2013,35(3):131-136. [23] 李颖, 吴保华, 倪文, 等.矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版),2020,41(4):581-586.LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science),2020,41(4):581-586. [24] 徐东, 倪文, 汪群慧, 等.碱渣复合胶凝材料制备无熟料混凝土[J]. 哈尔滨工业大学学报,2020,52(8):151-160.XU D, NI W, WANG Q H, et al. Preparation of clinker-free concrete by using soda residue composite cementitious material[J]. Journal of Harbin Institute of Technology,2020,52(8):151-160. [25] 黄天勇, 章银祥, 陈旭峰.石膏掺量对三元胶凝体系水泥基自流平砂浆的影响[J]. 硅酸盐通报,2019,38(6):1738-1742.HUANG T Y, ZHANG Y X, CHEN X F. Effect of gypsum contents on cement-based self-leveling mortar in ternary binder system[J]. Bulletin of the Chinese Ceramic Society,2019,38(6):1738-1742. [26] 易龙生, 康路良, 齐丽娜, 等.不同激发剂对免烧钢渣陶粒抗压强度的影响[J]. 金属矿山,2015(1):166-170.YI L S, KANG L L, QI L N, et al. Effect of different activators on compressive strength of non-sintered steel slag ceramsite[J]. Metal Mine,2015(1):166-170. [27] SUN J W, ZHANG Z Q, ZHUANG S Y, et al. Hydration properties and microstructure characteristics of alkali-activated steel slag[J]. Construction and Building Materials,2020,241:118141. doi: 10.1016/j.conbuildmat.2020.118141 [28] 王瑞兰, 蒋文莉, 李庚英.化学激发剂对钢渣体系的激发效果研究[J]. 水科学与工程技术,2018(4):12-15.WANG R L, JIANG W L, LI G Y. Study on the excitation effect of chemical activator on steel slag system[J]. Water Sciences and Engineering Technology,2018(4):12-15. [29] 唐正彦, 王建国, 董涛.激发剂对钢渣早期活性影响的研究[J]. 粉煤灰,2013,25(1):18-20.TANG Z Y, WANG J G, DONG T. Research on effect of activator on early activity of steel slag[J]. Coal Ash,2013,25(1):18-20. [30] 胡曙光, 韦江雄, 丁庆军.水玻璃对钢渣水泥激发机理的研究[J]. 水泥工程,2001(5):4-6. doi: 10.3969/j.issn.1007-0389.2001.05.002HU S G, WEI J X, DING Q J. Research on excitation principle of sodium silicate to steel slag cement[J]. Cement Engineering,2001(5):4-6. doi: 10.3969/j.issn.1007-0389.2001.05.002 [31] 魏瑞丽, 李辉, 张婕.钢渣活性激发的机理及研究进展[J]. 材料导报,2014,28(21):105-108.WEI R L, LI H, ZHANG J. Mechanism and recent development of steel slag activating activity[J]. Materials Review,2014,28(21):105-108. [32] 段思宇. 钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究[D]. 太原: 山西大学, 2020. [33] 董龙瑞. 钢渣少熟料水泥的制备及在混凝土中的应用[D]. 包头: 内蒙古科技大学, 2020. [34] 宋月, 林娜, 马彦伟, 等.复合激发剂对钢渣-矿渣基胶凝材料性能的影响[J]. 安徽工业大学学报(自然科学版),2019,36(1):24-28.SONG Y, LIN N, MA Y W, et al. Influence of composite activator on the properties of steel slag and slag based cementing materials[J]. Journal of Anhui University of Technology (Natural Science),2019,36(1):24-28. [35] SUN J W, CHEN Z H. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag[J]. Journal of Thermal Analysis and Calorimetry,2019,138(1):47-56. doi: 10.1007/s10973-019-08146-3 [36] 许世斌. 钢渣基复合掺合料制备及应用研究[D]. 昆明: 昆明理工大学, 2021.