Progress in the application of atmospheric pressure plasma jets in environmental field
-
摘要:
大气压等离子体射流(APPJ)是一种新兴的大气压等离子体放电技术,其在大气压下产生,具有放电温度和激发电压低、放电装置灵活、操作简便安全等优点,能够在大气环境中产生,在生物医学、环境卫生、材料改性等多领域具有广泛的应用前景。概述了近年来国内外APPJ在环境卫生和环境污染治理等环境领域,特别是环境灭菌、环境污染物去除和环境藻类治理等方面的应用;阐述了APPJ的射流装置与处理方式、效果和机理;基于研究现状,探讨了APPJ在环境领域应用存在的问题与解决途径,主要包括其灭菌降解机理、试验规模放大、等离子体射流发生装置设计和等离子体射流电源研发;最后展望了该技术未来在环境领域应用的发展方向和趋势。
-
关键词:
- 大气压等离子体射流(APPJ) /
- 环境灭菌消毒 /
- 污染物去除 /
- 湖泊藻类去除 /
- 环境应用
Abstract:Atmospheric pressure plasma jet (APPJ) is a new type of atmospheric pressure plasma discharge technology. It is generated under atmospheric pressure and has the advantages of low discharge temperature and excitation voltage, flexible discharge device, simple and safe operation. It can be produced in atmospheric environment, and has a wide range of application prospects in biomedicine, environmental health, material modification and other fields. The applications of APPJ in the environmental field such as environmental sanitation and pollution control at home and abroad in recent years were comprehensively summarized, especially the applications of environmental sterilization, environmental pollutant removal and environmental algae treatment, and its jet equipment, treatment styles, effects and mechanisms were elaborated. Based on the research status, the existing problems and solutions in the field of APPJ environment were discussed, including its sterilization and degradation mechanism, scale-up of test, design of plasma jet generator and development of plasma jet power supply. Finally, the future development direction and trend of the application of this technology in the field of environment were prospected.
-
表 1 APPJ对水中典型环境污染物去除的应用研究
Table 1. Application of APPJ to the removal of typical environmental pollutants in the water
污染物名称 等离子体射流类型 射流装置及
处理方式射流试验效果 射流试验机理 水中代表性糖皮质激素污染物氢化可的松 (HC) 空气源介质阻挡放电射流[44] 射流水反应器由底部多个微等离子体喷射单元组成,采取空气从底部石英管曝入产生射流的处理方式 HC的去除率随放电功率增大和放电时间延长而增加;在初始浓度为0.138 mmol/L,放电功率为49.7 W,空气流量为4 L/min条件下,处理120 min后去除率达98%;HC的去除率随着空气流量的增大而升高。碱性条件(pH为8.3)不利于HC的降解,弱酸性条件(pH为3.8~5.4)有利于HC降解 放电过程中产生了OH(A-X)、NH(A-X)、N2(C-B)等活性粒子,其中•OH、1O2和•O2−在HC的降解过程中起到重要作用 水中环境残留的典型氟喹诺酮抗生素诺氟沙星(NOR) 无电极高流量Ar大气压微波等离子体射流(MPJ)[45] 无电极高流量Ar源大气压微波等离子体射流反应器,采取射流石英管底部接触溶液的处理方式 处理6 min时NOR降解率可达98.27%±1.03%;处理15 min时,矿化率(TOC去除率)达到68.67%±3.21%。Escherichia coli毒性测试表明,处理20 min后的NOR溶液无毒 NOR溶液的快降解是由于接触溶液的等离子体射流横切接触面大所致,表明•OH的无选择性氧化在降解NOR时起主要作用,其主要攻击对二氮己环、喹诺酮和苯环 表 2 APPJ对环境有机染料去除的应用研究
Table 2. Application of atmospheric pressure plasma jets to the removal of environmental organic dyes
污染物
名称等离子体射流类型 射流反应器及处理方式 射流试验效果 射流试验机理 亚甲基蓝(MB) 氩气等离子体射流[51] 由中空通气的不锈钢棒高压电极和置入圆底三口烧瓶外的不锈钢网状接地电极组成射流装置,采用射流置入液面上方的处理方式(距离为5 mm) Ar等离子体射流在40 min内得到大于99%的降解率;在处理70 min时,在零级纯空气和N2气源中的降解率分别为99%和89%;MB降解符合拟一级反应动力学,添加铁离子催化剂产生了芬顿反应,会促进了MB降解和矿化 Ar等离子体射流的降解性能最好,是由于在Ar等离子体射流下形成大量的H2O2 常压非热微波氩气等离子体射流[52] 等离子体液上射流装置,采用T型管射流装置置入液面上方
(1 mm)的射流处理方式随着MB初始浓度的降低(250×10−6~5×10−6),其去除率增大。MB拟一级动力学常数可达到0.177 min−1,较高的Ar流速得到更高的MB降解速率;MB降解速率与Ar激发的活性物种强度和H2O2浓度有直接关系,H2O2能量产率可以达到2.7 mg/(kW·h);当容积小于50 mL时,50%MB转化的能量产率为0.033~0.296 g/(kW·h) Ar激发的活性物种和溶液中H2O2在MB降解过程中起到重要作用 常压氦气等离子体液上射流[53] 射流反应器由石英管内钨丝做高压电极,缠绕石英管的铝箔为接地极组成,采用射流喷头与液面的距离为5 mm的射流处理方式 最佳7.5 L/min的He流速下,等离子体活性物种OH、He*、Hα、和OI会出现最大峰值;MB降解效率取决于射流处理时间与He流速 活性物种(OH、He*、Hα和OI)溶解在MB溶液中,对MB分子分解起到关键作用 单个或多个丝状介质阻挡放电(DBD)射频射流[54] Y型DBD等离子射流反应器,射流从液上置入液面以下的处理方式 以Ar/N2混合气体作为气源,提高了能效和缩短了处理时间(仅6 min),射流浸入式的处理方式会缩短完全脱色处理时间 随着能量效率的增加,在Ar/N2等离子体中RNS物种含ROS物种会积累,UV辐射也起到重要的作用 铬黑T (EBT) 氩气源等离子体液上射流[55] 射流反应器是2个石英管外缠绕的铜条状电极组成的介质阻挡放电射流装置,采用石英射流喷头放置离溶液液面以上为1 cm处的处理方式 在Ar流速为0.5 L/min的Ar-APPJ处理6 min后,EBT脱色率高达约80% HO·和O2 −·在EBT溶液的脱色过程中发挥着重要的作用,其射流放电会先破坏偶氮键,再将EBT分子的芳香环断裂为小分子化合物 -
[1] KOLB J F, MOHAMED A A H, PRICE R O, et al. Cold atmospheric pressure air plasma jet for medical applications[J]. Applied Physics Letters,2008,92(24):241501. doi: 10.1063/1.2940325 [2] LIU X H, HONG F, GUO Y, et al. Sterilization of Staphylococcus aureus by an atmospheric non-thermal plasma jet[J]. Plasma Science and Technology,2013,15(5):439-442. doi: 10.1088/1009-0630/15/5/09 [3] LAROUSSI M. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Transactions on Plasma Science,1996,24(3):1188-1191. doi: 10.1109/27.533129 [4] SUN P, SUN Y, WU H Y, et al. Atmospheric pressure cold plasma as an antifungal therapy[J]. Applied Physics Letters,2011,98(2):021501. doi: 10.1063/1.3530434 [5] LU X P, JIANG Z H, XIONG Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine[J]. Applied Physics Letters,2008,92(8):081502. doi: 10.1063/1.2883945 [6] LU X P, YE T, CAO Y G, et al. The roles of the various plasma agents in the inactivation of bacteria[J]. Journal of Applied Physics,2008,104(5):053309. doi: 10.1063/1.2977674 [7] PAN J, SUN P, TIAN Y, et al. A novel method of tooth whitening using cold plasma microjet driven by direct current in atmospheric-pressure air[J]. IEEE Transactions on Plasma Science,2010,38(11):3143-3151. doi: 10.1109/TPS.2010.2066291 [8] SARANI A, NIKIFOROV A Y, de GEYTER N, et al. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture[J]. Applied Surface Science,2011,257(20):8737-8741. doi: 10.1016/j.apsusc.2011.05.071 [9] 李文浩, 田朝, 冯绅绅, 等.大气压等离子体射流装置及应用研究进展[J]. 真空科学与技术学报,2018,38(8):695-707. doi: 10.13922/j.cnki.cjovst.2018.08.09LI W H, TIAN C, FENG S S, et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology,2018,38(8):695-707. doi: 10.13922/j.cnki.cjovst.2018.08.09 [10] LACKMANN J W, BANDOW J E. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets[J]. Applied Microbiology and Biotechnology,2014,98(14):6205-6213. doi: 10.1007/s00253-014-5781-9 [11] 蒲启康, 刘思静, 黄欢, 等.大气压低温等离子体射流对白色念珠菌生物膜的杀灭效果[J]. 四川大学学报(医学版),2019,50(3):339-343.PU Q K, LIU S J, HUANG H, et al. Sterilization effect of an atmospheric low temperature plasma jet on Candida albicans biofilm[J]. Journal of Sichuan University (Medical Science Edition),2019,50(3):339-343. [12] JUROV A, ŠKORO N, SPASIĆ K, et al. Helium atmospheric pressure plasma jet parameters and their influence on bacteria deactivation in a medium[J]. The European Physical Journal D,2022,76(2):29. doi: 10.1140/epjd/s10053-022-00357-y [13] 范明阳, 郝小龙, 韩秀茹.大气压等离子体射流气源组分研究进展[J]. 化工进展,2015,34(12):4158-4164. doi: 10.16085/j.issn.1000-6613.2015.12.005FAN M Y, HAO X L, HAN X R. Research advance in composition of gas source in atmospheric-pressure plasma jet[J]. Chemical Industry and Engineering Progress,2015,34(12):4158-4164. doi: 10.16085/j.issn.1000-6613.2015.12.005 [14] 江南, 曹则贤.大气压冷等离子体射流研究进展[J]. 物理,2011,40(11):734-741.JIANG N, CAO Z X. Research advances on the atmospheric pressure cold plasma jet[J]. Physics,2011,40(11):734-741. [15] KIM D H, PARK C S, SHIN B J, et al. Uniform area treatment for surface modification by simple atmospheric pressure plasma treatment technique[J]. IEEE Access, 7: 103727-103737. [16] DOMONKOS M, TICHÁ P, TREJBAL J, et al. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry[J]. Applied Sciences,2021,11(11):4809. doi: 10.3390/app11114809 [17] 熊紫兰, 卢新培, 鲜于斌, 等.大气压低温等离子体射流及其生物医学应用[J]. 科技导报,2010,28(15):97-105.XIONG Z L, LU X P, XIANYU B, et al. Atmospheric pressure low temperature plasma jets and their biomedical applications[J]. Science & Technology Review,2010,28(15):97-105. [18] YANG B, CHEN J R, YU Q S, et al. Inactivation of Bacillus spores using a low-temperature atmospheric plasma brush[J]. IEEE Transactions on Plasma Science,2010,38(7):1624-1631. doi: 10.1109/TPS.2010.2049129 [19] LIM J S, KIM R H, HONG Y J, et al. Interactions between atmospheric pressure plasma jet and deionized water surface[J]. Results in Physics,2020,19:103569. doi: 10.1016/j.rinp.2020.103569 [20] MUNEEKAEW S, HUANG Y, WANG M J. Selective killing effects of atmospheric pressure plasma jet on human melanoma and lewis lung carcinoma cells[J]. Plasma Chemistry and Plasma Processing,2021,41(6):1613-1629. doi: 10.1007/s11090-021-10197-0 [21] HUANG Y M, CHANG W C, HSU C L. Inactivation of norovirus by atmospheric pressure plasma jet on salmon sashimi[J]. Food Research International,2021,141:110108. doi: 10.1016/j.foodres.2021.110108 [22] TANG Y Z, LU X P, LAROUSSI M, et al. Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media[J]. Plasma Processes and Polymers,2008,5(6):552-558. doi: 10.1002/ppap.200800014 [23] YANG L Q, CHEN J R, GAO J L. Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms[J]. Journal of Electrostatics,2009,67(4):646-651. doi: 10.1016/j.elstat.2009.01.060 [24] UHM H S, CHOI E H, CHO G S, et al. Sterilization of microbes by using various plasma jets[J]. Journal of the Korean Physical Society,2012,60(6):897-902. doi: 10.3938/jkps.60.897 [25] 范明阳, 郝小龙.大气压氮氧等离子体射流灭活表面大肠杆菌及其发射光谱分析研究[J]. 核聚变与等离子体物理,2017,37(1):118-124. doi: 10.16568/j.0254-6086.201701021FAN M Y, HAO X L. Spectrum analysis and surface inactivation of E. coli bacteria by atmospheric pressure N2/O2 plasma jet[J]. Nuclear Fusion and Plasma Physics,2017,37(1):118-124. doi: 10.16568/j.0254-6086.201701021 [26] LIU T J, ZENG Y X, XUE X, et al. He-plasma jet generation and its application for E. coli sterilization[J]. Journal of Spectroscopy,2021,2021:1-10. [27] LEE H J, JUNG H, CHOE W, et al. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets[J]. Food Microbiology,2011,28(8):1468-1471. doi: 10.1016/j.fm.2011.08.002 [28] KURITA H, MIYAMOTO J, MIYACHIKA S, et al. Production of reactive oxygen and nitrogen species in a cell culture medium exposed to an atmospheric pressure plasma jet[J]. MRS Advances,2017,2(18):987-993. doi: 10.1557/adv.2017.34 [29] ASGHAR A H, AHMED O B, GALALY A R. Inactivation of E. coli using atmospheric pressure plasma jet with dry and wet Argon discharges[J]. Membranes,2021,11(1):46. doi: 10.3390/membranes11010046 [30] KE Z G, ZHANG Q F, HUANG Q. Potassium iodide potentiates bacterial killing by helium atmospheric pressure plasma jet[J]. ACS Omega,2019,4(5):8365-8372. doi: 10.1021/acsomega.9b00160 [31] 夏文杰, 刘定新.Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报,2021,36(4):765-776.XIA W J, LIU D X. Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society,2021,36(4):765-776. [32] HOSSEINZADEH COLAGAR A, ALAVI O, MOTALLEBI S, et al. Decontamination of Streptococcus pyogenes and Escherichia coli from solid surfaces by singlet and triplet atmospheric pressure plasma jet arrays[J]. Arabian Journal for Science and Engineering,2016,41(6):2139-2145. doi: 10.1007/s13369-015-1944-y [33] 卢新培.等离子体射流及其医学应用[J]. 高电压技术,2011,37(6):1416-1425.LU X P. Plasma jets and their biomedical application[J]. High Voltage Engineering,2011,37(6):1416-1425. [34] 沈洁, 程诚, 方世东, 等.大气压等离子体射流对细菌芽孢灭活机理研究[J]. 真空科学与技术学报,2013,33(9):888-892. doi: 10.3969/j.issn.1672-7126.2013.09.09SHEN J, CHENG C, FANG S D, et al. Inaction mechanism of bacteria spore with atmospheric pressure plasma[J]. Chinese Journal of Vacuum Science and Technology,2013,33(9):888-892. doi: 10.3969/j.issn.1672-7126.2013.09.09 [35] 谢静, 郝小龙, 顾雨辰, 等.大气压等离子体射流灭菌的研究进展[J]. 安全与环境工程,2013,20(6):49-53. doi: 10.3969/j.issn.1671-1556.2013.06.010XIE J, HAO X L, GU Y C, et al. Research advance of the sterilization effect of atmospheric-pressure plasma jet[J]. Safety and Environmental Engineering,2013,20(6):49-53. doi: 10.3969/j.issn.1671-1556.2013.06.010 [36] HOMMA T, FURUTA M, TAKEMURA Y. Inactivation of Escherichia coli: using the atmospheric pressure plasma jet of Ar gas[J]. Japanese Journal of Applied Physics,2013,52(3R):036201. doi: 10.7567/JJAP.52.036201 [37] DENG S X, CHENG C, NI G H, et al. Bacillus subtilis devitalization mechanism of atmosphere pressure plasma jet[J]. Current Applied Physics,2010,10(4):1164-1168. doi: 10.1016/j.cap.2010.02.004 [38] ARJUNAN K P, OBRUSNÍK A, JONES B T, et al. Effect of additive oxygen on the reactive species profile and microbicidal property of a helium atmospheric pressure plasma jet[J]. Plasma Processes and Polymers,2016,13(11):1089-1105. doi: 10.1002/ppap.201600058 [39] CHANDANA L, SANGEETHA C J, SHASHIDHAR T, et al. Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium[J]. Science of the Total Environment,2018,640/641:493-500. doi: 10.1016/j.scitotenv.2018.05.342 [40] 郑超, 徐羽贞, 黄逸凡, 等.脉冲等离子体射流杀灭表面和水中的细菌[J]. 浙江大学学报(工学版),2014,48(7):1329-1335.ZHENG C, XU Y Z, HUANG Y F, et al. Surface and water disinfection by pulsed plasma jet[J]. Journal of Zhejiang University (Engineering Science),2014,48(7):1329-1335. [41] 刘文正, 严伟, 郝宇翀.大气压射流等离子体放电特性及其灭菌效果[J]. 强激光与粒子束,2010,22(12):2984-2988. doi: 10.3788/HPLPB20102212.2984LIU W Z, YAN W, HAO Y C. Discharge characteristics of plasma jet at atmospheric pressure and its sterilization efficacy[J]. High Power Laser and Particle Beams,2010,22(12):2984-2988. doi: 10.3788/HPLPB20102212.2984 [42] MOŠOVSKÁ S, MEDVECKÁ V, KLAS M, et al. Decontamination of Escherichia coli on the surface of soybean seeds using plasma activated water[J]. LWT,2022,154:112720. doi: 10.1016/j.lwt.2021.112720 [43] LIN C M, CHU Y C, HSIAO C P, et al. The optimization of plasma-activated water treatments to inactivate Salmonella enteritidis (ATCC 13076) on shell eggs[J]. Foods (Basel, Switzerland),2019,8(10):E520. [44] 黄柯靓, 李国庆, 刘亚男, 等.常压等离子体射流去除水中糖皮质激素污染物[J]. 中国环境科学,2020,40(8):3417-3423. doi: 10.3969/j.issn.1000-6923.2020.08.020HUANG K L, LI G Q, LIU Y N, et al. Degradation of glucocorticoids in water by atmospheric pressure plasma jet[J]. China Environmental Science,2020,40(8):3417-3423. doi: 10.3969/j.issn.1000-6923.2020.08.020 [45] XUE L, ZHAO C X, MO Q, et al. An electrodeless atmospheric microwave plasma jet for efficient degradation of antibiotic norfloxacin[J]. Journal of Environmental Management,2021,291:112729. doi: 10.1016/j.jenvman.2021.112729 [46] DU J, LIU Z Q, BAI C J, et al. Concentration distributions and reaction pathways of species in the mass transfer process from atmospheric pressure plasma jet to water[J]. European Physical Journal D,2018,72(10):179. doi: 10.1140/epjd/e2018-90138-3 [47] GÜNEŞ E, ÇIFÇI D İ, DINÇER A R, et al. Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes[J]. Turkish Journal of Chemistry,2021,45(3):551-565. doi: 10.3906/kim-2010-48 [48] ATTRI P, YUSUPOV M, PARK J H, et al. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes[J]. Scientific Reports,2016,6:34419. doi: 10.1038/srep34419 [49] GOTT R P, THOMPSON M E, STATON B C, et al. Analysis of time-resolved plasma jet emissions that drive methylene blue dye decomposition[J]. IEEE Transactions on Plasma Science,2021,49(7):2113-2124. doi: 10.1109/TPS.2021.3089852 [50] JAISWAL S, AGUIRRE E M. Comparison of atmospheric pressure argon producing O(1S) and helium plasma jet on methylene blue degradation[J]. AIP Advances,2021,11(4):045311. doi: 10.1063/5.0046948 [51] CHANDANA L, REDDY P M K, SUBRAHMANYAM C. Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium[J]. Chemical Engineering Journal,2015,282:116-122. doi: 10.1016/j.cej.2015.02.027 [52] GARCÍA M C, MORA M, ESQUIVEL D, et al. Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye[J]. Chemosphere,2017,180:239-246. doi: 10.1016/j.chemosphere.2017.03.126 [53] ABDEL-FATTAH E. Atmospheric pressure helium plasma jet and its applications to methylene blue degradation[J]. Journal of Electrostatics,2019,101:103360. doi: 10.1016/j.elstat.2019.103360 [54] YEHIA S A, ZARIF M E, BITA B I, et al. Development and optimization of single filament plasma jets for wastewater decontamination[J]. Plasma Chemistry and Plasma Processing,2020,40(6):1485-1505. doi: 10.1007/s11090-020-10111-0 [55] LI X, LIU J, WU Y, et al. Decolorization effect and related mechanism of atmospheric pressure plasma jet on Eriochrome Black T[J]. Water Science and Technology,2019,79(6):1184-1194. doi: 10.2166/wst.2019.120 [56] CHIANG M H, LIAO K C, LIN I M, et al. Effects of oxygen addition and treating distance on surface cleaning of ITO glass by a non-equilibrium nitrogen atmospheric-pressure plasma jet[J]. Plasma Chemistry and Plasma Processing,2010,30(5):553-563. doi: 10.1007/s11090-010-9237-4 [57] 金英, 钱牧扬, 任春生, 等.预电离大气压低温等离子体射流及其在表面清洗中的应用[J]. 高电压技术,2012,38(7):1682-1689.JIN Y, QIAN M Y, REN C S, et al. Atmospheric pressure low temperature plasma jet assisted by the preionization and its application on surface cleaning[J]. High Voltage Engineering,2012,38(7):1682-1689. [58] JIN Y, REN C S, YANG L, et al. Atmospheric pressure plasma jet in Ar and O2/Ar mixtures: properties and high performance for surface cleaning[J]. Plasma Science and Technology,2013,15(12):1203-1208. doi: 10.1088/1009-0630/15/12/08 [59] LI Y, HAN S T, LI Z G, et al. Decontamination of 2-Chloroethyl ethyl sulfide on the surface by atmospheric pressure plasma jet[J]. Journal of Hazardous Materials,2022,424:127536. doi: 10.1016/j.jhazmat.2021.127536 [60] 聂秋月, 张晓菲, 李和平, 等.大气压介质阻挡放电等离子体射流源研究进展[J]. 中国科学:物理学·力学·天文学,2014,44(11):1157-1169.NIE Q Y, ZHANG X F, LI H P, et al. Advances of atmospheric-pressure dielectric-barrier-discharge plasma jets[J]. Scientia Sinica (Physica, Mechanica & Astronomica),2014,44(11):1157-1169. [61] WANG D X, AO Y H, WANG P F. Effective inactivation of Microcystis aeruginosa by a novel Z-scheme composite photocatalyst under visible light irradiation[J]. Science of the Total Environment,2020,746:141149. doi: 10.1016/j.scitotenv.2020.141149 [62] LIU Z H, LIU C L, ZHAO W Y. Research on efficient and economical treatment methods for algal pollution in landscape water[J]. E3S Web of Conferences,2021,245:02028. doi: 10.1051/e3sconf/202124502028 [63] 李俊楠, 杨苏文, 金卫栋, 等.低温等离子体除藻应用的研究进展[J]. 环境工程技术学报,2021,11(1):114-121. doi: 10.12153/j.issn.1674-991X.20200121LI J N, YANG S W, JIN W D, et al. Research progress of the application of non-thermal plasma to algae removal[J]. Journal of Environmental Engineering Technology,2021,11(1):114-121. doi: 10.12153/j.issn.1674-991X.20200121 [64] 谢静, 郝小龙, 朱柏霖.大气压等离子体射流对水中铜绿微囊藻的灭活作用[J]. 环境工程学报,2015,9(4):1651-1658. doi: 10.12030/j.cjee.20150421XIE J, HAO X L, ZHU B L. Inactivation effect of Microcystis aeruginosa in water by atmospheric-pressure plasma jet[J]. Chinese Journal of Environmental Engineering,2015,9(4):1651-1658. doi: 10.12030/j.cjee.20150421 [65] ADHIKARI E R, PTASINSKA S. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage[J]. The European Physical Journal D,2016,70(9):180. doi: 10.1140/epjd/e2016-70274-6 [66] LACKMANN J W, SCHNEIDER S, NARBERHAUS F, et al. Characterization of damage to bacteria and bio-macromolecules caused by (V)UV radiation and particles generated by a microscale atmospheric pressure plasma jet[C]//Plasma for Bio-Decontamination. Medicine and Food Security, 2012: 180. [67] BAI M D, ZHANG Z T, XUE X H, et al. Killing effects of hydroxyl radical on algae and bacteria in ship's ballast water and on their cell morphology[J]. Plasma Chemistry and Plasma Processing,2010,30(6):831-840. doi: 10.1007/s11090-010-9252-5 [68] 林德锋, 罗书豪, 侯世英, 等.大气压放电等离子体射流研究进展[J]. 中国高新技术企业,2013(34):9-13.LIN D F, LUO S H, HOU S Y, et al. Research progress in atmospheric pressure discharge plasma jet[J]. China High-Tech Enterprises,2013(34):9-13. [69] 刘轩东, 任蔷, 何红庄, 等.用于材料表面处理的大气压等离子体射流技术研究进展[J]. 现代应用物理,2020,11(4):69-77. doi: 10.12061/j.issn.2095-6223.2020.040401LIU X D, REN Q, HE H Z, et al. Progress in atmospheric-pressure plasma jet array technology for material surface treatment[J]. Modern Applied Physics,2020,11(4):69-77. ⊗ doi: 10.12061/j.issn.2095-6223.2020.040401