Influencing factors and thermal desorption performance of the coupled heating process of steam injection and electrical resistance heating
-
摘要:
针对单一热脱附技术的应用局限性,构建蒸汽注入-电阻加热(SEE-ERH)耦合热脱附三维试验系统,研究耦合热脱附技术的影响因素及处理效果。温度场分布试验结果表明,含水率、电压强度、蒸汽注入速率和抽提速率均可影响加热效果;并且,在一定范围内,前3个因素与升温效果呈正相关关系。采用COMSOL软件建立的模型能较好地模拟三维试验系统的加热过程。污染脱附试验结果表明,在ERH的基础上增加SEE可促进污染组分的解吸,并加快污染物去除速率;在20%含水率、80 V电压、1.00 L/min蒸汽注入速率和1.2 L/min抽提速率的条件下,SEE-ERH的加热效率较好,对菲的去除率可达到99.0%。
Abstract:Aiming at the application limitations of single thermal desorption technology, a three-dimensional experimental system of the steam enhanced extraction and electrical resistance heating (SEE-ERH) coupled thermal desorption was constructed to study the influencing factors and desorption performance of the coupled heating process of thermal desorption technology. The results of the temperature field distribution experiments showed that water content, voltage intensity, steam injection amount and extraction rate could influence the heating effect. Within a certain range, the heating effect was positively correlated with the first three factors. The model established using COMSOL software could well simulate the heating process of the system. The pollution desorption experiment results showed that adding SEE to ERH could promote the desorption of pollutant components and accelerate the removal rate of pollutants. Under the condition of 20% moisture content, 80 V voltage, 1.00 L/min steam injection rate and 1.2 L/min extraction rate, the heating efficiency of SEE-ERH was good, and the desorption efficiency of phenanthrene could reach up to 99.0%.
-
图 7 模拟SEE-ERH耦合加热过程的温度随时间变化
注:同图6。
Figure 7. Simulation of the temperature change vs. time under the SEE-ERH coupled heating
-
[1] 国家统计局. 中国统计摘要: 2006[M]. 北京: 中国统计出版社, 2006. [2] 《中国环境年鉴·环境监察分册》编委会. 中国环境年鉴环境监察分册2008[M]. 北京: 海洋出版社, 2009. [3] 赵中华. 含氯有机污染土壤热脱附及联合处置研究[D]. 杭州: 浙江大学, 2018. [4] 陶贵荣, 王莉衡.浅析土壤污染与修复技术[J]. 化学与生物工程,2010,27(6):4-6. doi: 10.3969/j.issn.1672-5425.2010.06.002TAO G R, WANG L H. Discussion on soil pollution and remediation technology[J]. Chemistry & Bioengineering,2010,27(6):4-6. doi: 10.3969/j.issn.1672-5425.2010.06.002 [5] DAILY W D, RAMIREZ A L, NEWMARK R L, et al. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater: US08/058900[P]. 1995-09-12. [6] HERON G, CARROLL S, NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Groundwater Monitoring & Remediation,2005,25(4):92-107. [7] HERON G, van ZUTPHEN M, CHRISTENSEN T H, et al. Soil heating for enhanced remediation of chlorinated solvents: a laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene[J]. Environmental Science & Technology,1998,32(10):1474-1481. [8] FARRAR M E, MORGENSTERN M R, AMARI J A, et al. Electrical resistance heating of soils at C-reactor at the Savannah River site[C]//Proceedings of the Annual International Conference on Soils. Sediments, Water and Energy, 2010. [9] US EPA. Northeast site area a NAPL remediation final report[R]. Washington DC: US EPA, 2003. [10] 刘家巍. 原位热传导修复有机污染土壤温度场模拟研究[D]. 杭州: 浙江大学, 2021. [11] 于珊, 李顺群, 冯慧强.土的导热系数与其干密度、饱和度和温度的关系[J]. 天津城建大学学报,2015,21(3):172-176.YU S, LI S Q, FENG H Q. Relationship among soil's thermal conductivity, dry density, saturation and temperature[J]. Journal of Tianjin Chengjian University,2015,21(3):172-176. [12] 段妍. 土壤热物性参数测试及变化规律实验研究[D]. 太原: 太原理工大学, 2015. [13] 甄作林, 朱江鸿, 张虎元, 等.砂土导热性能测试与预测研究[J]. 地下空间与工程学报,2018,14(6):1577-1586.ZHEN Z L, ZHU J H, ZHANG H Y, et al. Study on the measurement and prediction of thermal properties for sand[J]. Chinese Journal of Underground Space and Engineering,2018,14(6):1577-1586. [14] 杨元元. 包气带污染原位热蒸汽注射修复技术实验研究[D]. 长春: 吉林大学, 2018. [15] 王瑛, 李扬, 黄启飞, 等.污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究,2011,24(9):1016-1022.WANG Y, LI Y, HUANG Q F, et al. Effects of different pollutant concentrations and soil particle size on thermal desorption efficiency of DDT-contaminated soil[J]. Research of Environmental Sciences,2011,24(9):1016-1022. [16] 赵勇胜, 杨元元, 高鹏龙, 等.多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤的效果[J]. 吉林大学学报(地球科学版),2019,49(5):1431-1437. doi: 10.13278/j.cnki.jjuese.20180047ZHAO Y S, YANG Y Y, GAO P L, et al. Migration characteristics of steam and its remediation to chlorobenzene contaminated soil[J]. Journal of Jilin University (Earth Science Edition),2019,49(5):1431-1437. doi: 10.13278/j.cnki.jjuese.20180047 [17] CLASS H, HELMIG R, BASTIAN P. Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. an efficient solution technique[J]. Advances in Water Resources,2002,25(5):533-550. doi: 10.1016/S0309-1708(02)00014-3 [18] 陈永俊. 非水相污染物在SVE技术中的典型性影响因素研究[D]. 徐州: 中国矿业大学, 2019. [19] TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research,2000,24(15):1335-1350. doi: 10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X [20] DUC CAO T, KUMAR THOTA S, VAHEDIFARD F, et al. General thermal conductivity function for unsaturated soils considering effects of water content, temperature, and confining pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(11):04021123. doi: 10.1061/(ASCE)GT.1943-5606.0002660 [21] SCHWARZ H, BERTERMANN D. Mediate relation between electrical and thermal conductivity of soil[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2020,6(3):1-16. [22] FU Y W, HORTON R, REN T S, et al. A general form of Archie's model for estimating bulk soil electrical conductivity[J]. Journal of Hydrology,2021,597:126160. doi: 10.1016/j.jhydrol.2021.126160 [23] FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture,2005,46(1/2/3):45-70. [24] DEAN S W, SHAH P H, SINGH D N. Generalized archie's law for estimation of soil electrical conductivity[J]. Journal of ASTM International,2005,2(5):13087. doi: 10.1520/JAI13087 [25] 李炳智, 朱江, 吉敏, 等.蒸汽强化气相抽提修复苯系物污染粘性土壤[J]. 上海交通大学学报(农业科学版),2016,34(5):58-67.LI B Z, ZHU J, JI M, et al. Research upon steam enhanced vapor extraction for the remediation of benzene homologues contaminated clayed soil[J]. Journal of Shanghai Jiao Tong University (Agricultural Science),2016,34(5):58-67. [26] 卢中华, 裴宗平, 鹿守敢, 等.通风速率对土壤中四氯化碳污染物去除效率的影响研究[J]. 农业环境科学学报,2011,30(1):55-59.LU Z H, PEI Z P, LU S G, et al. Effects of airflow velocity on the removal efficiency of carbon tetrachloride from polluted soil[J]. Journal of Agro-Environment Science,2011,30(1):55-59. [27] 杨玉洁, 王春雨, 沙雪华, 等.烃类污染土壤热强化气相抽提技术的脱附动力学[J]. 环境工程学报,2019,13(10):2328-2335. doi: 10.12030/j.cjee.201905119YANG Y J, WANG C Y, SHA X H, et al. Desorption kinetics of thermal enhanced soil vapor extraction technology used in hydrocarbon contaminated soil[J]. Chinese Journal of Environmental Engineering,2019,13(10):2328-2335. doi: 10.12030/j.cjee.201905119 [28] 马艳飞, 郑西来, 冯雪冬, 等.气相抽提法修复油污土壤的影响因素研究[J]. 非金属矿,2011,34(4):53-55. doi: 10.3969/j.issn.1000-8098.2011.04.017MA Y F, ZHENG X L, FENG X D, et al. Study on influence factors of soil vapor extraction restoring oil-contaminated soil[J]. Non-Metallic Mines,2011,34(4):53-55. doi: 10.3969/j.issn.1000-8098.2011.04.017 [29] 杨勇, 黄海, 陈美平, 等.异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报,2016,6(6):559-570. doi: 10.3969/j.issn.1674-991X.2016.06.081YANG Y, HUANG H, CHEN M P, et al. Development and application of ex-situ thermal desorption technology in organic pollutants contaminated field remediation[J]. Journal of Environmental Engineering Technology,2016,6(6):559-570. □ doi: 10.3969/j.issn.1674-991X.2016.06.081