Design analysis of constructed wetlands for treatment of terminal effluent of wastewater treatment plants from technical standard perspective
-
摘要:
人工湿地已逐渐应用于我国污水处理厂提标改造和尾水资源化利用工程实践中,并成为一项备受关注的技术。为指导和规范国内各地区污水处理厂尾水人工湿地工程的设计和建设,国家和地方相关职能部门及专业协会发布实施了多部尾水人工湿地技术标准。在全面梳理国内外尾水人工湿地工程应用现状和当前指导尾水人工湿地设计、建设的相关技术标准实施情况的基础上,对不同层面尾水人工湿地技术标准从工艺选型、设计参数等方面进行对比分析。依据尾水人工湿地碳水平调控策略的可行性、经济性并结合实际工程应用可达性的综合分析,确定湿地结构优化、工艺改进、耦合工艺是优化尾水人工湿地工程设计和强化其脱氮效能的较好策略和途径。为保障人工湿地工程安全和正常运营,建议人工湿地工程设计时应依据当地的水文条件,进行湿地的总水量平衡计算。未来应构建基于基质和水生植物选择、工程运营监测等方面的基础数据库,加强技术标准在尾水人工湿地全生命周期中的指导作用。
Abstract:The constructed wetlands (CWs) technology has been gradually applied to the upgrading and reconstruction of wastewater treatment plants (WWTPs) and the utilization of terminal effluent of WWTPs in China, and has become an important technical research field. Some national and local responsible departments and professional associations have promulgated and implemented several technical standards, which are used to guide and standardize the design and construction of CWs for treatment of terminal effluent of WWTPs. The application status of CWs projects for treatment of terminal effluent of WWTPs at home and abroad and the implementation of relevant technical standards guiding the design and construction of CWs were summarized, and the process selection and structure design parameters in the technical standards of CWs at different levels were compared and analyzed. By comparing the feasibility and economy of the carbon level control strategies of CWs and the accessibility of the actual project applications, it was found that the wetland structure optimization, process improvement and coupling process were the better strategies and pathways to optimize the design of CWs projects and enhance their nitrogen removal efficiency. Meanwhile, in order to ensure the safety and normal operation of CWs projects, it was suggested that the total water balance of wetlands should be calculated under the local hydrological conditions during the design of CWs projects. It was necessary to build a basic database based on substrates and aquatic plant selection, engineering operation monitoring and other aspects to strengthen the guiding role of technical standards in the whole life cycle of CWs.
-
Table 1. Basic information of typical domestic project cases of CWs for terminal effluent of WWTPs
工程名称 设计规模/(m3/d) 设计进水水质 设计出水水质 工艺流程 浙江临安污水处理一厂尾水人工湿地 6×104 一级B标准 一级A 标准 潜流人工湿地 + 表流人工湿地 浙江临安污水处理二厂尾水人工湿地 8×104 一级A标准 地表水Ⅲ类标准 接触氧化系统+鱼草乔(木)生态平衡系统+高效
自净水生生态系统+生态滤地系统+景观生态塘深圳龙华污水处理厂一期
尾水人工湿地2×104 一级A 标准 地表水Ⅲ类标准 生态氧化池+生态砾石床+垂直流人工湿地 浙江慈溪市域污水处理一期工程
尾水人工湿地(北部)10×104 一级B标准 一级A 标准 植物碎石床+表流湿地+生态塘+强化生物滤床 深圳茅洲河燕川湿地 1.4×104 一级B标准 地表水Ⅳ类标准 生态氧化池+高效沉淀池+垂直流湿地+表流湿地 浙江东阳污水处理厂尾水人工湿地 6×104 一级A 标准 地表水Ⅴ类标准 潜流人工湿地+表流人工湿地 表 2 国内已发布实施的污水处理厂尾水人工湿地技术标准情况
Table 2. China’s current published technical standards of CWs for terminal effluent of WWTPs
标准类型 标准名称 发布部门 发布年份 适用范围 技术指南/
导则《人工湿地水质净化技术指南》
(简称《生态环境部指南》)生态环境部 2021 达标排放的污水处理厂出水、微污染河水、农田退水及类似性质的低污染水 《安徽省污水处理厂尾水湿地处理
技术导则(试行)》安徽省住房和城乡建设厅 2015 安徽省省内排入封闭水体的污水处理厂尾水 技术规范/
规程T/CSES 30—2021《污水处理厂尾水人工湿地深度净化技术指南》(简称《TCSES指南》) 中国环境科学学会 2021 NH3-N、TN、TP浓度和COD等达到GB 18918—2002一级B标准的污水处理厂尾水 DB63/T 1350—2015《河湟谷地人工湿地污水处理技术规范》(简称《青海省规范》) 原青海省质量技术监督局、原青海省环境保护厅 2015 青海境内河湟谷地区域城镇污水处理厂尾水、经过适当预处理的分散型或集中式生活污水、或其他性质类似的低浓度污/废水 DB41/T 1947—2020《污水处理厂尾水人工湿地工程技术规范》(简称《河南省规范》) 河南省生态环境厅、
河南省市场监督管理局2020 水质符合GB 18918—2002 和地方标准的城镇污水处理厂尾水 CJJ/T 54—2017《污水自然处理工程技术规程》
(简称《CJJ规程》)住房和城乡建设部 2017 规模小于或等于10万m3/d的城镇污水处理厂出水、受有机污染的地表水 表 3 《河南省规范》与《生态环境部指南》设计参数建议值比较
Table 3. Recommended values for design parameters in Henan Specification and Guideline of Ministry of Ecology and Environment
技术标准 湿地类型 长宽比 水力停留
时间/d水力表面负荷/
〔m3/(m2·d)〕污染物表面负荷/〔g/(m2·d)〕 BOD5或COD NH3-N TN TP 《河南省规范》 表面流 3∶1~5∶1 5~8 ≤0.07 ≤4(BOD5) 水平潜流 <3∶1 2~4 ≤0.3~0.5 ≤30(BOD5) 垂直潜流 <3∶1 1.5~3 ≤0.4~0.6 ≤30(BOD5) 《生态环境部指南》
Ⅲ区表面流 >3∶1 2~10 0.03~0.20 0.8~6.0(COD) 0.04~0.50 0.08~1.00 0.01~0.10 水平潜流 <3∶1 1~3 0.3~1.0 3~12(COD) 1.5~3.0 1.2~6.0 0.04~0.20 垂直潜流 1∶1~3∶1 0.8~2.5 0.4~1.2 5~15(COD) 2~4 1.5~8.0 0.06~0.25 表 4 《青海省规范》和《生态环境部指南》的设计参数建议值
Table 4. Recommended values for design parameters in Qinghai Specification and Guideline of Ministry of Ecology and Environment
技术标准 湿地类型 长宽比 水力停留
时间/d水力表面负荷/
〔m3/(m2·d)〕污染物表面负荷/〔g/(m2·d)〕 COD NH3-N TN TP 《青海省规范》 表面流 3∶1~5∶1 4~10 0.05~0.15,
宜取0.05~0.102~6 0.5~3.0 0.5~1.5 0.05~0.10 复合潜流 1∶1~3∶1 2~4 0.2~0.5,
宜取0.310~60 2~8 1.5~5.0 0.2~0.5 《生态环境部指南》
Ⅱ区表面流 >3∶1 2~12 0.02~0.20 0.5~5.0 0.02~0.30 0.05~0.50 0.008~0.050 水平潜流 <3∶1 1~4 0.2~1.0 2~12 1~2 0.8~6.0 0.03~0.10 垂直潜流 1∶1~3∶1 0.8~2.5 0.4~1.2 3~15 1.5~4.0 1.2~8.0 0.05~0.12 Table 5. Regulation strategy of carbon level in CWs for terminal effluent of WWTPs
碳水平调控策略 调控类型 主要手段 特征 工程适宜性评价 直接碳调控 外加碳源 低分子有机物、污水、废水和剩余污泥、
天然有机物及高分子缓释碳等投加量难以控制,易造成二次污染和
成本过于高昂一般 植物根系碳源 种植根系碳含量较高的植物 容易受温度和光照等因素的影响,
碳调控能力不稳定一般 间接碳调控 工艺改进 分段进水 实现碳源合理分配,提高反硝化效率 较好 结构优化 折板式构型 提高湿地内部水力效率,防止短流 较好
工艺耦合自养型脱氮工艺 对碳源没有要求,适合低碳氮比污水 较好 微生物燃料电池 产能低、内阻大,运行参数不合理 较差 -
[1] ZHANG G Z, MA K, ZHANG Z X, et al. Waste brick as constructed wetland fillers to treat the tail water of sewage treatment plant[J]. Bulletin of Environmental Contamination and Toxicology,2020,104(2):273-281. doi: 10.1007/s00128-020-02782-4 [2] 王明铭, 魏俊, 黄荣敏, 等.潜流人工湿地填料及其去除污染物机理研究进展[J]. 环境工程技术学报,2021,11(4):769-776. doi: 10.12153/j.issn.1674-991X.20200199WANG M M, WEI J, HUANG R M, et al. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology,2021,11(4):769-776. doi: 10.12153/j.issn.1674-991X.20200199 [3] JI M D, HU Z, HOU C L, et al. New insights for enhancing the performance of constructed wetlands at low temperatures[J]. Bioresource Technology,2020,301:122722. doi: 10.1016/j.biortech.2019.122722 [4] 魏俊, 赵梦飞, 刘伟荣, 等.我国尾水型人工湿地发展现状[J]. 中国给水排水,2019,35(2):29-33. doi: 10.19853/j.zgjsps.1000-4602.2019.02.006WEI J, ZHAO M F, LIU W R, et al. Development status of constructed wetland (CWs) for treatment of terminal effluent of wastewater treatment plants (WWTPs) in China[J]. China Water & Wastewater,2019,35(2):29-33. doi: 10.19853/j.zgjsps.1000-4602.2019.02.006 [5] CONTE G, MARTINUZZI N, GIOVANNELLI L, et al. Constructed wetlands for wastewater treatment in central Italy[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2001,44(11/12):339-343. [6] 余杰, 田宁宁, 钱靖华, 等.人工湿地在回用水中的应用及应考虑的问题[J]. 中国建设信息(水工业市场),2009(10):44-48.YU J, TIAN N N, QIAN J H, et al. Application of constructed wetland in reuse water and problems to be considered[J]. Information of China Construction (Water-Industry Market),2009(10):44-48. [7] 魏俊, 韩万玉, 杜运领, 等. 尾水人工湿地设计与实践[M]. 北京: 中国水利水电出版社, 2019. [8] 张长宽. 冬季保温和组合填料提高复合生态湿地去除尾水氮磷效应的研究[D]. 杭州: 浙江大学, 2016. [9] 孔令为, 邵卫伟, 梅荣武, 等.浙江省城镇污水处理厂尾水人工湿地深度提标研究[J]. 中国给水排水,2019,35(2):39-43. doi: 10.19853/j.zgjsps.1000-4602.2019.02.008KONG L W, SHAO W W, MEI R W, et al. Study on constructed wetland for advanced treatment of terminal effluent of wastewater treatment plant in Zhejiang Province[J]. China Water & Wastewater,2019,35(2):39-43. doi: 10.19853/j.zgjsps.1000-4602.2019.02.008 [10] 华莹珺. 污水处理型湿地景观营造研究: 以杭州横溪湿地公园为例[D]. 杭州: 浙江农林大学, 2019. [11] US EPA. Guiding principles for constructed treatment wetlands: providing for water quality and wildlife habitat[R]. Washington DC: US EPA, 2000. [12] DWA 2006 principles for dimensioning, construction and operation of wastewater treatment plants with soil filters for biological cleaning of municipal wastewater[R]. Hennef: German Association for Water, Wastewater and Waste (DWA), 2006. [13] DWA 2017b Standard DWA-A 262E: principles for dimensioning, construction and operation of wastewater treatment plants with planted and unplanted filters for treatment of domestic and municipal wastewater[S]. Hennef: German Association for Water, Wastewater and Waste (DWA), 2017. [14] 住房和城乡建设部标准定额研究所. 人工湿地污水处理技术导则: RISN-TG 006—2009[S]. 北京: 中国建筑工业出版社, 2009. [15] 环境保护部. 人工湿地污水处理工程技术规范: HJ 2005—2010[S]. 北京: 中国环境科学出版社, 2011. [16] 住房和城乡建设部. 污水自然处理工程技术规程: CJJ/T 54—2017[S]. 北京: 中国建筑工业出版社, 2017. [17] 卢少勇, 万正芬, 康兴生, 等.《人工湿地水质净化技术指南》编制思路与体系[J]. 环境工程技术学报,2021,11(5):829-836. doi: 10.12153/j.issn.1674-991X.20210377LU S Y, WAN Z F, KANG X S, et al. Idea and system of compiling Technical Guidelines for Water Purification by Constructed Wetlands[J]. Journal of Environmental Engineering Technology,2021,11(5):829-836. doi: 10.12153/j.issn.1674-991X.20210377 [18] 成水平, 王月圆, 吴娟.人工湿地研究现状与展望[J]. 湖泊科学,2019,31(6):1489-1498. doi: 10.18307/2019.0625CHENG S P, WANG Y Y, WU J. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences,2019,31(6):1489-1498. doi: 10.18307/2019.0625 [19] 黄畯楠, 李青, 张琼华, 等.高负荷复合式人工湿地对污水处理厂尾水低温期的净化效果[J]. 环境工程学报,2021,15(11):3561-3571. doi: 10.12030/j.cjee.202107037HUANG J N, LI Q, ZHANG Q H, et al. Performance of a high loading hybrid constructed wetland on wastewater treatment plant effluent purification in low temperature period[J]. Chinese Journal of Environmental Engineering,2021,15(11):3561-3571. doi: 10.12030/j.cjee.202107037 [20] 张翔, 李子富, 周晓琴, 等.我国人工湿地标准中潜流湿地设计分析[J]. 中国给水排水,2020,36(18):24-31. doi: 10.19853/j.zgjsps.1000-4602.2020.18.005ZHANG X, LI Z F, ZHOU X Q, et al. Design analysis of subsurface flow wetland in constructed wetland standards in China[J]. China Water & Wastewater,2020,36(18):24-31. doi: 10.19853/j.zgjsps.1000-4602.2020.18.005 [21] YU C Q, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China[J]. Nature,2019,567(7749):516-520. doi: 10.1038/s41586-019-1001-1 [22] 刘勇超, 陈启斌, 王朝旭, 等. 外加碳源对生物炭基潜流人工湿地净化污水处理厂尾水效能的影响[J]. 环境工程技术学报, 2023, 13(4) : 1295-1303.LIU Y C, CHEN Q B, WANG C X, et al. Effect of external carbon addition on pollutants removal from the tail water of a sewage treatment plant by biochar-based subsurface flow constructed wetland[J]. Journal of Environmental Engineering Technology,2023, 13(4) : 1295-1303. [23] 王宇娜, 国晓春, 卢少勇, 等.人工湿地对低污染水中氮去除的研究进展: 效果、机制和影响因素[J]. 农业资源与环境学报,2021,38(5):722-734.WANG Y N, GUO X C, LU S Y, et al. Review of nitrogen removal in low-polluted water by constructed wetlands: performance, mechanism, and influencing factors[J]. Journal of Agricultural Resources and Environment,2021,38(5):722-734. [24] 肖其亮, 熊丽萍, 彭华, 等.不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究,2022,35(5):1277-1287.XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combinations[J]. Research of Environmental Sciences,2022,35(5):1277-1287. [25] 张馨文, 冯成业, 张文智, 等.人工湿地碳调控研究进展[J]. 湿地科学,2022,20(3):413-420.ZHANG X W, FENG C Y, ZHANG W Z, et al. A review on control of carbon in constructed wetlands[J]. Wetland Science,2022,20(3):413-420. [26] 李超超, 程晓陶, 申若竹, 等.城市化背景下洪涝灾害新特点及其形成机理[J]. 灾害学,2019,34(2):57-62. doi: 10.3969/j.issn.1000-811X.2019.02.012LI C C, CHENG X T, SHEN R Z, et al. New characteristics and formation mechanism of flood and waterlogging disasters in the context of rapid urbanization[J]. Journal of Catastrophology,2019,34(2):57-62. ◇ doi: 10.3969/j.issn.1000-811X.2019.02.012