Effect of magnetic biochar and its aging on the adsorption performance of Cd2+
-
摘要:
磁性生物炭(FBC)是一种具有良好吸附性能且可实现磁分离的吸附材料,但制备过程磁性前驱体用量及老化作用是否影响其结构和吸附重金属的能力却鲜有研究。以水稻秸秆和铁盐为原料制备不同铁炭质量比(1∶4、1∶2和1∶1,记作FBC-4、FBC-2、FBC-1)的FBC,比较其表面形态、官能团等理化性质,以及对Cd2+的吸附性能的差异;利用自然老化和高温老化2种物理方法研究老化作用对磁性生物炭理化性质和吸附性能的影响。结果表明:与普通生物炭(BC)相比,FBC具有更大的比表面积和孔容,含氧官能团数量增多,并且出现Fe—O的特征峰,FBC-4、FBC-2、FBC-1的饱和磁化强度随着单位生物炭载铁量增加而增大,分别为0.64、2.21和17.69 A·m2/kg;BC和FBC对Cd2+吸附等温线和动力学曲线均符合Langmuir方程和准二级动力学方程,拟合出的平衡吸附量和理论最大吸附量关系为FBC-1>FBC-4>FBC-2>BC,即磁改性可以提高对Cd2+的平衡吸附量,且FBC-1对Cd2+的吸附能力最强;FBC-1经过2个月的自然老化和高温老化后,比表面积分别下降45.8%和36.4%,平均孔径分别增加72.7%和43.2%,饱和磁化强度分别增加至33.53和26.65 A·m2/kg;老化作用会降低磁性生物炭对Cd2+的吸附能力,其平衡吸附量由老化前的36.97 mg/g减小至30.97 mg/g(自然老化)和28.22 mg/g(高温老化),理论最大吸附量由63.80 mg/g分别下降至46.68和40.29 mg/g,相比于自然老化,高温老化作用对磁性生物炭Cd2+的吸附性能的抑制作用更明显。
Abstract:Magnetic biochar (FBC) is an adsorption material with good adsorption performance and magnetic separation. However, there are few studies on whether the amount of magnetic precursor in the preparation process and the aging effect affect its structure and the ability to adsorb heavy metals. FBC with different iron-carbon ratios (1∶4, 1∶2 and 1∶1, denoted as FBC-4, FBC-2 and FBC-1) were prepared from rice straw and iron salts, and their surface morphology, functional groups and other physical and chemical properties, as well as the adsorption properties of Cd2+ were compared. Two physical aging methods (spontaneous aging and high temperature aging) were used to study the effect of aging on the physicochemical properties and adsorption properties of magnetic biochar. The results showed that compared with ordinary biochar (BC), FBC had a larger specific surface area and pore volume, the number of oxygen-containing functional groups increased, and the characteristic peaks of Fe—O appeared. The saturation magnetization of FBC-4, FBC-2 and FBC-1 increased with the increase of iron content per unit biochar, which were 0.64, 2.21 and 17.69 A·m2/kg, respectively. The adsorption isotherms and kinetic curves of BC and FBC for Cd2+ were consistent with the Langmuir equation and the pseudo-second-order kinetic equation. The relationship between the fitted equilibrium adsorption capacity and the theoretical maximum adsorption capacity was FBC-1>FBC-4>FBC-2>BC, that is, magnetic modification could improve the equilibrium adsorption capacity of Cd2+, and FBC-1 had a stronger adsorption capacity for Cd2+. After two months of spontaneous aging and high temperature aging, the specific surface area of FBC-1 decreased by 45.8% and 36.4%, the average pore size increased by 72.7% and 43.2%, and the saturation magnetization increased to 33.53 and 26.65 A·m2/kg, respectively. Aging could inhibit the adsorption capacity of magnetic biochar for Cd2+. The equilibrium adsorption capacity decreased from 36.97 mg/g before aging to 30.97 mg/g (spontaneous aging) and 28.22 mg/g (high temperature aging), and the theoretical maximum adsorption capacity decreased from 63.80 mg/g to 46.68 mg/g and 40.29 mg/g, respectively. Compared with spontaneous aging, high temperature aging had a more obvious inhibitory effect on the adsorption performance of magnetic biochar for Cd2+.
-
Key words:
- magnetic biochar /
- cadmium (Cd) /
- aging /
- specific surface area /
- saturation magnetization /
- adsorption properties
-
表 1 不同生物炭及其老化后的微观结构性质
Table 1. Microstructural properties of BC and FBC and after their aging treatments
性质 生物炭 比表面积
/(m2/g)外比表面积
/(m2/g)微孔比表面积
/(m2/g)总孔容
/(cm3/g)微孔孔容
/cm3平均孔径
/nm老化前 BC 5.73 2.52 3.21 0.02 0.001 3 10.43 FBC-4 94.89 88.44 6.45 0.31 0.001 7 12.93 FBC-2 122.13 117.31 4.82 0.38 0.001 0 12.49 FBC-1 115.05 107.33 7.72 0.30 0.002 4 10.48 老化后 BCSPON 3.92 2.06 1.86 0.01 0.000 8 11.91 BCHT 9.80 3.86 5.83 0.01 0.002 5 4.94 (FBC-1)SPON 62.35 57.87 4.48 0.28 0.001 5 18.10 (FBC-1)HT 73.17 67.17 6.00 0.27 0.002 0 15.01 表 2 不同生物炭及其老化后对Cd2+吸附动力学拟合参数
Table 2. Kinetic fitting parameters for Cd2+ adsorption by BC and FBC and after their aging treatments
性质 生物炭 准一级动力学方程 准二级动力学方程 Qe/
(mg/g)k1/h-1 R2 Qe/
(mg/g)k2/
〔g/(mg·h)〕R2 老化前 BC 27.53 1.58 0.63 30.00 0.076 0.91 FBC-4 31.31 1.65 0.74 33.73 0.077 0.95 FBC-2 30.07 1.72 0.68 32.42 0.083 0.93 FBC-1 34.64 1.84 0.70 36.97 0.084 0.94 老化后 BCSPON 26.15 1.49 0.60 28.67 0.073 0.88 BCHT 24.83 1.56 0.62 27.09 0.083 0.90 (FBC-1)SPON 28.96 1.83 0.74 30.97 0.097 0.96 (FBC-1)HT 26.33 1.82 0.69 28.22 0.105 0.93 表 3 不同生物炭及其老化后对Cd2+的等温吸附拟合参数
Table 3. Isotherm fitting parameters for Cd2+ adsorption by BC and FBC and after their aging treatments
生物炭 Langmuir 方程 Freundlich 方程 Qm/
(mg/g)KL/
(L/mg)R2 KF/
〔mg(1−1/n)·L1/n/g〕1/n R2 BC 48.80 0.011 6 0.990 3.335 0.417 0.912 FBC-4 61.33 0.009 4 0.998 3.291 0.449 0.919 FBC-2 57.07 0.009 9 0.994 3.28 0.44 0.921 FBC-1 63.80 0.009 3 0.994 3.36 0.452 0.914 BCSPON 46.54 0.015 3 0.955 4.419 0.369 0.780 BCHT 38.81 0.017 4 0.964 4.103 0.357 0.822 (FBC-1)SPON 46.68 0.014 8 0.971 4.233 0.377 0.819 (FBC-1)HT 40.29 0.017 1 0.970 4.226 0.357 0.818 -
[1] FAN Z X, ZHANG Q, LI M, et al. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method[J]. Environmental Science and Pollution Research,2018,25(9):8330-8339. doi: 10.1007/s11356-017-1145-1 [2] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment,2018,642:690-700. doi: 10.1016/j.scitotenv.2018.06.068 [3] 陈能场, 郑煜基, 何晓峰, 等.《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报,2017,36(9):1689-1692. doi: 10.11654/jaes.2017-1220CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the National General Survey of Soil Contamination[J]. Journal of Agro-Environment Science,2017,36(9):1689-1692. doi: 10.11654/jaes.2017-1220 [4] 李晓锋, 丁豪杰, 苏奇倩, 等.降低烟草吸收土壤镉的钝化技术及其机理研究进展[J]. 环境工程技术学报,2022,12(3):893-904. doi: 10.12153/j.issn.1674-991X.20210227LI X F, DING H J, SU Q Q, et al. Research progress on passivation technologies and their mechanism of reducing soil cadmium uptake by tobacco[J]. Journal of Environmental Engineering Technology,2022,12(3):893-904. doi: 10.12153/j.issn.1674-991X.20210227 [5] 武超, 周顺江, 王华利, 等.生物炭和锌对土壤镉赋存形态及小麦镉积累的影响[J]. 环境科学研究,2022,35(1):202-210.WU C, ZHOU S J, WANG H L, et al. Effects of biochar and zinc on soil cadmium fractions and wheat accumulation[J]. Research of Environmental Sciences,2022,35(1):202-210. [6] 陈斐杰, 夏会娟, 刘福德, 等.生物质炭特性及其对土壤性质的影响与作用机制[J]. 环境工程技术学报,2022,12(1):161-172. doi: 10.12153/j.issn.1674-991X.20210067CHEN F J, XIA H J, LIU F D, et al. Characteristics of biochar and its effects and mechanism on soil properties[J]. Journal of Environmental Engineering Technology,2022,12(1):161-172. doi: 10.12153/j.issn.1674-991X.20210067 [7] FOONG S Y, CHAN Y H, CHIN B L F, et al. Production of biochar from rice straw and its application for wastewater remediation: an overview[J]. Bioresource Technology,2022,360:127588. doi: 10.1016/j.biortech.2022.127588 [8] 崔志文, 任艳芳, 王伟, 等.碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学,2020,41(7):3315-3325. doi: 10.13227/j.hjkx.201912025CUI Z W, REN Y F, WANG W, et al. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar[J]. Environmental Science,2020,41(7):3315-3325. doi: 10.13227/j.hjkx.201912025 [9] 罗海艳, 李丹阳, 刘寿涛, 等.铁锰改性椰壳炭对土壤镉形态及水稻吸收积累镉的影响[J]. 环境科学研究,2019,32(5):857-865. doi: 10.13198/j.issn.1001-6929.2018.10.11LUO H Y, LI D Y, LIU S T, et al. Effects of Fe-Mn modified coconut shell biochar on cadmium speciation and accumulation in rice[J]. Research of Environmental Sciences,2019,32(5):857-865. doi: 10.13198/j.issn.1001-6929.2018.10.11 [10] HASSAN M, NAIDU R, DU J H, et al. Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment[J]. Science of the Total Environment,2020,702:134893. doi: 10.1016/j.scitotenv.2019.134893 [11] 李华夏, 林毅, 周小斌, 等.生物炭负载纳米零价铁去除废水中重金属的研究进展[J]. 环境工程技术学报,2022,12(3):787-793. doi: 10.12153/j.issn.1674-991X.20210242LI H X, LIN Y, ZHOU X B, et al. Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron[J]. Journal of Environmental Engineering Technology,2022,12(3):787-793. doi: 10.12153/j.issn.1674-991X.20210242 [12] LIU L, YUAN M, WANG X R, et al. Biochar aging: properties, mechanisms, and environmental benefits for adsorption of metolachlor in soil[J]. Environmental Technology & Innovation,2021,24:101841. [13] 胡昕怡, 徐伟健, 施珂珂, 等.土壤/沉积物中黑碳的老化模拟研究进展[J]. 环境工程技术学报,2020,10(5):860-870. doi: 10.12153/j.issn.1674-991X.20190221HU X Y, XU W J, SHI K K, et al. Research progress of aging simulation of black carbons (BCs) in soils/sediments[J]. Journal of Environmental Engineering Technology,2020,10(5):860-870. doi: 10.12153/j.issn.1674-991X.20190221 [14] WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology,2020,54(23):14797-14814. [15] HUANG X Y, LYU P, LI L F, et al. Effect of three aging processes on physicochemical and As(Ⅴ) adsorption properties of Ce/Mn-modified biochar[J]. Environmental Research,2022,214:113839. doi: 10.1016/j.envres.2022.113839 [16] XING D, CHENG H G, NING Z P, et al. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil[J]. Journal of Environmental Management,2022,321:115832. doi: 10.1016/j.jenvman.2022.115832 [17] HAN Z T, SANI B, MROZIK W, et al. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J]. Water Research,2015,70:394-403. doi: 10.1016/j.watres.2014.12.016 [18] 陈昱. 生物炭对重金属的长期稳定性研究[D]. 苏州: 苏州科技大学, 2016. [19] LIANG H G, ZHU C X, JI S, et al. Magnetic Fe2O3/biochar composite prepared in a molten salt medium for antibiotic removal in water[J]. Biochar,2022,4(1):1-13. doi: 10.1007/s42773-021-00127-w [20] 吴文卫, 周丹丹.生物炭老化及其对重金属吸附的影响机制[J]. 农业环境科学学报,2019,38(1):7-13. doi: 10.11654/jaes.2018-0411WU W W, ZHOU D D. Influence of biochar aging on its physicochemical properties and adsorption of heavy metals[J]. Journal of Agro-Environment Science,2019,38(1):7-13. doi: 10.11654/jaes.2018-0411 [21] 花昀. 改良水热炭对镉的吸附及水稻土壤镉生物有效的影响 [D]. 南京: 南京农业大学, 2020. [22] CHEN B L, CHEN Z M, LÜ S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology,2011,102(2):716-723. doi: 10.1016/j.biortech.2010.08.067 [23] MORADI N, KARIMI A. Fe-modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):329-340. doi: 10.1007/s42729-020-00363-2 [24] GUPTA V K, NAYAK A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles[J]. Chemical Engineering Journal,2012,180:81-90. doi: 10.1016/j.cej.2011.11.006 [25] GONG H F, HUANG J J, DING Z, et al. A potential method using magnetically modified wheat straw biochars for soil Cd extraction[J]. Ecological Engineering,2021,166:106240. doi: 10.1016/j.ecoleng.2021.106240 [26] 朱健, 王平, 雷明婧, 等.硅藻土的复合改性及其对水溶液中Cd2+的吸附特性[J]. 环境科学学报,2016,36(6):2059-2066.ZHU J, WANG P, LEI M J, et al. Composite modification of diatomite and its adsorption characteristic of Cd2+ in aqueous solutions[J]. Acta Scientiae Circumstantiae,2016,36(6):2059-2066. [27] CHIA C H, GONG B, JOSEPH S D, et al. Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX[J]. Vibrational Spectroscopy,2012,62:248-257. doi: 10.1016/j.vibspec.2012.06.006 [28] 魏园园. 软磁铁素体不锈钢的成分设计及性能研究[D]. 南京: 南京理工大学, 2017. [29] 王书光. 深冷处理对铁镍基非晶合金软磁性能的影响[D]. 太原: 太原科技大学, 2016. [30] 吴萍. Zn在生物炭上的吸附固定分子机制及其环境效应[D]. 北京: 中国科学院大学, 2019. [31] 卞园. 老化作用对生物炭吸附钝化矿区土壤中镉的影响[D]. 包头: 内蒙古科技大学, 2021. [32] TRAKAL L, VESELSKÁ V, ŠAFAŘÍK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology,2016,203:318-324. doi: 10.1016/j.biortech.2015.12.056 [33] SIZMUR T, FRESNO T, AKGÜL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology,2017,246:34-47. doi: 10.1016/j.biortech.2017.07.082 [34] LIANG S, SHI S Q, ZHANG H H, et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: formation mechanism and efficient adsorption of Cr(Ⅵ) in an aqueous solution[J]. Science of the Total Environment,2019,695:133886. doi: 10.1016/j.scitotenv.2019.133886 [35] 姜晶, 邓精灵, 盛光遥.生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报,2022,31(10):2089-2100.JIANG J, DENG J L, SHENG G Y. A review of biochar aging and its impact on the adsorption of heavy metals[J]. Ecology and Environmental Sciences,2022,31(10):2089-2100. [36] XU Z B, XU X Y, TSANG D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution,2018,242:1362-1370. ⊗ doi: 10.1016/j.envpol.2018.08.012