Study on the mitigation effect of submerged vegetation on greenhouse gases emission from rivers
-
摘要:
为揭示沉水植物生态修复在减缓河流温室气体释放方面的作用,在浙江省嘉善县选择盛家湾(有沉水植物)和东龙港(无沉水植物)2条河流,利用扩散模型法对其水体CO2、CH4、N2O释放通量进行24 h连续监测,并进行对比分析。结果表明:2条河流除盛家湾水体在16:00表现为CO2吸收外,其余监测时间内3种气体均呈过饱和状态,表现为向大气释放温室气体,24 h内比较,有沉水植物的盛家湾可减少89%的温室气体释放。将气体释放通量与环境因子进行相关性分析发现,盛家湾水体CO2释放通量与水温、pH、溶解氧浓度呈显著负相关,与氧化还原电位呈显著正相关,N2O释放通量与水温、pH、溶解氧浓度呈显著正相关,与氧化还原电位呈显著负相关;东龙港水体CO2释放通量与水温呈显著正相关,CH4释放通量与水温、溶解氧浓度呈显著正相关,N2O释放通量与水温呈显著正相关。
Abstract:In order to reveal the role of ecological restoration of submerged plants in slowing down the release of greenhouse gases (GHGs) from rivers, the two rivers of Shengjiawan (with submerged plants growing) and Donglonggang (without submerged plants growing) were selected in Jiashan County, Zhejiang Province, and the fluxes of CO2, CH4 and N2O were continuously monitored for 24 hours by the diffusion models. The results showed that except for the CO2 absorption occurrence in Shengjiawan at 16:00, the three gases were supersaturated during the rest of the monitoring time, showing the release of GHGs to the atmosphere. In comparison, within 24 hours, the release of GHGs from Shengjiawan with submerged plants could be reduced by 89%. Based on the correlation analysis between gas release flux and environmental factors, it was found that in Shengjiawan, CO2 emission flux was significantly negatively correlated with water temperature, pH and dissolved oxygen concentration, and positively correlated with redox potential. N2O emission flux was positively correlated with water temperature, pH and dissolved oxygen concentration, and negatively correlated with redox potential. In Donglonggang, there was a significant positive correlation between CO2 release flux and water temperature, a significant positive correlation between CH4 release flux and water temperature and dissolved oxygen concentration, and a significant positive correlation between N2O emission flux and water temperature.
-
Key words:
- submerged plants /
- greenhouse gases /
- diffusive models /
- release flux /
- influencing factors
-
表 1 盛家湾与东龙港CO2当量通量对比
Table 1. Comparison of CO2 equivalent fluxes between Shengjiawan and Donglonggang
时段 CO2当量通量/〔mg/(m2·d)〕 CO2当量
通量降低率/%盛家湾 东龙港 12:00—次日10:00
(全天)4 930.50 43 056.70 89 12:00—18:00,次日
06:00—10:00(白天)3 022.68 27 064.92 89 20:00—次日04:00(夜晚) 1 907.80 15 991.78 88 表 2 国内部分河流水体CO2、CH4、N2O释放通量对比
Table 2. Comparison of CO2, CH4 and N2O emission fluxes from some rivers in China
省(市) 河流 释放通量 数据
来源CO2/
〔mg/(m2·h)〕CH4/
〔μg/(m2·h)〕N2O/
〔μg/(m2·h)〕浙江 盛家湾 47.41 569.67 30.38 本研究 东龙港 468.31 138.02 156.17 本研究 南苕溪 19.33 文献[23] 江苏 金川河 23.17 文献[24] 团结河 19.20 清江 12.48 文献[25] 汉江 6.65 龙川江 309.5 文献[26] 竹溪河 150.9 上海 南港 125.88 183.96 12.88 文献[27] 淀浦河 99.12 180.84 53.48 长泾 147.84 182.00 大寨河 163.56 182.28 张家河 131.88 197.64 施贤港 131.88 573.12 航塘港 203.28 吴淞江 106.08 天津 海河 10.39(冬季);
39.38(夏季)66.48(冬季);
335.88(夏季)27.04(冬季);
15.64(夏季)文献[28] 北京 温榆河 93.49(夏季) 12 817.5 文献[29] 表 3 环境因子与CO2、CH4、N2O释放通量的相关性分析
Table 3. Correlation analysis between environmental factors and CO2, CH4, N2O emission fluxes
环境因子 CO2释放通量 CH4释放通量 N2O释放通量 盛家湾 东龙港 盛家湾 东龙港 盛家湾 东龙港 水温 −0.825** 0.663* 0.371 0.681* 0.909** 0.702* 溶解氧浓度 −0.965** 0.340 −0.014 0.701* 0.923** 0.382 pH −0.895** 0.445 0.112 0.525 0.895** 0.494 氧化还原电位 0.897** −0.049 −0.088 0.014 −0.802** −0.559 NO3 −-N浓度 0.116 −0.841** −0.007 −0.266 −0.190 0.046 NH4 +-N浓度 0.160 −0.039 −0.305 −0.219 −0.492 −0.342 NO2 −-N浓度 0.431 −0.441 −0.278 0.181 −0.701* 0.555 DOC浓度 −0.182 −0.049 −0.049 0.231 0.067 0.021 注:*表示P<0.05;**表示P<0.01。 -
[1] YANG P, HE Q H, HUANG J F, et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China[J]. Atmospheric Environment,2015,115:269-277. doi: 10.1016/j.atmosenv.2015.05.067 [2] 邓焕广, 张智博, 刘涛, 等.城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素[J]. 湖泊科学,2019,31(4):1055-1063. doi: 10.18307/2019.0409DENG H G, ZHANG Z B, LIU T, et al. Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake[J]. Journal of Lake Sciences,2019,31(4):1055-1063. doi: 10.18307/2019.0409 [3] RASILO T, HUTCHINS R H S, RUIZ-GONZÁLEZ C, et al. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams[J]. Science of the Total Environment,2017,579:902-912. doi: 10.1016/j.scitotenv.2016.10.187 [4] 王晓锋, 袁兴中, 陈槐, 等.河流CO2与CH4排放研究进展[J]. 环境科学,2017,38(12):5352-5366.WANG X F, YUAN X Z, CHEN H, et al. Review of CO2 and CH4 emissions from rivers[J]. Environmental Science,2017,38(12):5352-5366. [5] 汤梦瑶, 胡晓康, 王洪伟, 等.天津市滨海河流N2O扩散通量及控制因子[J]. 环境科学,2022,43(3):1481-1491.TANG M Y, HU X K, WANG H W, et al. Diffusive fluxes and controls of N2O from coastal rivers in Tianjin City[J]. Environmental Science,2022,43(3):1481-1491. [6] KUMAR A, YANG T, SHARMA M P. Greenhouse gas measurement from Chinese freshwater bodies: a review[J]. Journal of Cleaner Production,2019,233:368-378. doi: 10.1016/j.jclepro.2019.06.052 [7] 系列解读(2)| 深入打好污染防治攻坚战 推动经济社会发展全面绿色转型[EB/OL]. (2021-11-09)[2023-01-07]. https://www.mee.gov.cn/zcwj/zcjd/202111/t20211109_959738.shtml. [8] 谭永洁, 王东启, 周立旻, 等.河流氧化亚氮产生和排放研究综述[J]. 地球与环境,2015,43(1):123-132. doi: 10.14050/j.cnki.1672-9250.2015.01.017TAN Y J, WANG D Q, ZHOU L M, et al. Review on the production and emission of nitrous oxide from rivers[J]. Earth and Environment,2015,43(1):123-132. doi: 10.14050/j.cnki.1672-9250.2015.01.017 [9] 龚小杰, 袁兴中, 刘婷婷, 等.水生植物对淡水生态系统温室气体排放的影响研究进展[J]. 地球与环境,2020,48(4):496-509. doi: 10.14050/j.cnki.1672-9250.2020.48.063GONG X J, YUAN X Z, LIU T T, et al. Review on effects of aquatic plants on the greenhouse gas emission from freshwater ecosystems[J]. Earth and Environment,2020,48(4):496-509. doi: 10.14050/j.cnki.1672-9250.2020.48.063 [10] GU X Z, CHEN K N, FAN C X. Preliminary evidence of effects of Phragmites australis growth on N2O emissions by laboratory microcosms[J]. Ecological Engineering,2015,83:33-38. doi: 10.1016/j.ecoleng.2015.06.008 [11] 张璐, 荀凡, 沈悦, 等.持续性高藻输入河道温室气体时空排放特征及其影响因素[J]. 湖泊科学,2022,34(3):752-765. doi: 10.18307/2022.0305ZHANG L, XUN F, SHEN Y, et al. Spatiotemporal emission characteristics and influencing factors of greenhouse-gas emissions in persistent algae-input channels[J]. Journal of Lake Sciences,2022,34(3):752-765. doi: 10.18307/2022.0305 [12] 刘瑞霞, 孙菲, 肖满, 等. 浙江嘉善东部区域盛家湾河道缓冲带及水生态修复实践[J]. 环境工程技术学报, 2022, 12(6): 2095-2104.LIU R X, SUN F, XIAO M, et al. Riverine buffer zone and water ecological restoration practice of Shengjiawan River course in eastern Jiashan County of Zhejiang Province[J]. Journal of Environmental Engineering Technology,2022, 12(6): 2095-2104. [13] 吴红宝. 典型河流生态系统碳氮温室气体扩散传输研究[D]. 芜湖: 安徽师范大学, 2017. [14] 孙玮玮, 王东启, 陈振楼, 等.长江三角洲平原河网水体溶存CH4和N2O浓度及其排放通量[J]. 中国科学(B辑:化学),2009,39(2):165-175.SUN W W, WANG D Q, CHEN Z L, et al. Dissolved CH4 and N2O concentrations and their discharge fluxes in plain river networks of the Yangtze River Delta[J]. Science in China (Series B:Chemistry),2009,39(2):165-175. [15] WEISS R F, PRICE B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry,1980,8(4):347-359. doi: 10.1016/0304-4203(80)90024-9 [16] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography:Methods,2014,12(6):351-362. doi: 10.4319/lom.2014.12.351 [17] JÄHNE B, LIBNER P, FISCHER R, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B:Chemical and Physical Meteorology,1989,41(2):177-195. doi: 10.3402/tellusb.v41i2.15068 [18] 王晓锋. 大都市区河网体系碳排放研究[D]. 重庆: 重庆大学, 2017. [19] RAYMOND P A, ZAPPA C J, BUTMAN D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers[J]. Limnology and Oceanography: Fluids and Environments,2012,2(1):41-53. doi: 10.1215/21573689-1597669 [20] 陈姝. 不同时间尺度城市河流水体温室气体排放特征[D]. 上海: 华东师范大学, 2022. [21] 余丹, 陈光程, 陈顺洋, 等.夏季九龙江口红树林土壤-大气界面温室气体通量的研究[J]. 应用海洋学学报,2014,33(2):175-182. doi: 10.3969/J.ISSN.2095-4972.2014.02.004YU D, CHEN G C, CHEN S Y, et al. Summer fluxes of atmospheric greenhouse gases from mangrove soils in Jiulongjiang Estuary[J]. Journal of Applied Oceanography,2014,33(2):175-182. doi: 10.3969/J.ISSN.2095-4972.2014.02.004 [22] KUZYAKOV Y, EHRENSBERGER H, STAHR K. Carbon partitioning and below-ground translocation by Lolium perenne[J]. Soil Biology and Biochemistry,2001,33(1):61-74. doi: 10.1016/S0038-0717(00)00115-2 [23] 袁淑方, 王为东.太湖流域源头溪流氧化亚氮(N2O)释放特征[J]. 生态学报,2012,32(20):6279-6288. doi: 10.5846/stxb201203270420YUAN S F, WANG W D. Characteristics of nitrous oxide (N2O) emission from a headstream in the upper Taihu Lake Basin[J]. Acta Ecologica Sinica,2012,32(20):6279-6288. doi: 10.5846/stxb201203270420 [24] 韩洋. 南京市河流温室气体排放通量及其影响因素的研究[D]. 南京: 南京信息工程大学, 2013. [25] 赵静. 长江和海南东部典型水体中溶存甲烷和氧化亚氮的分布与释放[D]. 青岛: 中国海洋大学, 2009. [26] 罗佳宸. 长江上游纵向峡谷型河流水-气界面CO2通量及驱动因素研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2019. [27] 谭永洁. 上海市河流沉积物温室气体的排放与产生机制[D]. 上海: 华东师范大学, 2014. [28] 胡晓康, 昝逢宇, 常素云, 等.天津市海河温室气体排放特征与影响因素研究[J]. 生态环境学报,2021,30(4):771-780. doi: 10.16258/j.cnki.1674-5906.2021.04.013HU X K, ZAN F Y, CHANG S Y, et al. Patterns and influencing factors of greenhouse gas emission from Haihe River in Tianjin[J]. Ecology and Environmental Sciences,2021,30(4):771-780. doi: 10.16258/j.cnki.1674-5906.2021.04.013 [29] 吴瑶洁, 李海英, 陈文重, 等.夏季温榆河温室气体释放特征与影响因素研究[J]. 环境科学与技术,2016,39(5):8-16.WU Y J, LI H Y, CHEN W Z, et al. Effects and emission characteristics of greenhouse gases from Wenyu River in summer[J]. Environmental Science & Technology,2016,39(5):8-16. [30] 杨平. 闽江河口湿地水产养殖塘水-气界面温室气体通量研 究[D]. 福州: 福建师范大学, 2013. [31] 陈袁波. 不同水体温室气体排放通量变化规律及其影响因素研究: 以南京为例[D]. 南京: 南京信息工程大学, 2021. [32] 常思琦, 王东启, 俞琳, 等.上海城市河流温室气体排放特征及其影响因素[J]. 环境科学研究,2015,28(9):1375-1381. doi: 10.13198/j.issn.1001-6929.2015.09.06CHANG S Q, WANG D Q, YU L, et al. Greenhouse gas emission characteristics from urban rivers in Shanghai[J]. Research of Environmental Sciences,2015,28(9):1375-1381. doi: 10.13198/j.issn.1001-6929.2015.09.06 [33] 杨平, 仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报,2015,35(20):6868-6880.YANG P, TONG C. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems: a review[J]. Acta Ecologica Sinica,2015,35(20):6868-6880. [34] ANGLE J C, MORIN T H, SOLDEN L M, et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions[J]. Nature Communications,2017,8:1567. doi: 10.1038/s41467-017-01753-4 [35] 常思琦. 上海市河流N2O和CH4排放特征及沉积物微生物群落的影响[D]. 上海: 华东师范大学, 2015. [36] ZENG F W, MASIELLO C A. Sources of CO2 evasion from two subtropical rivers in North America[J]. Biogeochemistry,2010,100(1):211-225. [37] 侯璐, 郭梦婕, 常思琦, 等.上海黄浦江两支流河流甲烷含量研究[J]. 湖北民族学院学报(自然科学版),2015,33(2):182-185. doi: 10.13501/j.cnki.42-1569/n.2015.06.018HOU L, GUO M J, CHANG S Q, et al. Study on correlation between the methane generation and environmental factors from two tributaries of Huangpu River[J]. Journal of Hubei University for Nationalities (Natural Science Edition),2015,33(2):182-185. ⊗ doi: 10.13501/j.cnki.42-1569/n.2015.06.018