留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉水植被对河流温室气体释放减缓作用研究

魏岩洁 胡成 李亚峰 耿姣 李青倩 孙菲 袁鹏

魏岩洁,胡成,李亚峰,等.沉水植被对河流温室气体释放减缓作用研究[J].环境工程技术学报,2023,13(5):1763-1770 doi: 10.12153/j.issn.1674-991X.20221050
引用本文: 魏岩洁,胡成,李亚峰,等.沉水植被对河流温室气体释放减缓作用研究[J].环境工程技术学报,2023,13(5):1763-1770 doi: 10.12153/j.issn.1674-991X.20221050
WEI Y J,HU C,LI Y F,et al.Study on the mitigation effect of submerged vegetation on greenhouse gases emission from rivers[J].Journal of Environmental Engineering Technology,2023,13(5):1763-1770 doi: 10.12153/j.issn.1674-991X.20221050
Citation: WEI Y J,HU C,LI Y F,et al.Study on the mitigation effect of submerged vegetation on greenhouse gases emission from rivers[J].Journal of Environmental Engineering Technology,2023,13(5):1763-1770 doi: 10.12153/j.issn.1674-991X.20221050

沉水植被对河流温室气体释放减缓作用研究

doi: 10.12153/j.issn.1674-991X.20221050
基金项目: 国家重点研发计划项目(2021YFC3201504);地方技术咨询项目(2021-地方科研-0163)
详细信息
    作者简介:

    魏岩洁(1998—),男,硕士研究生,主要研究方向为河流温室气体释放,1367936839@qq.com

    通讯作者:

    胡成(1969—),男,教授级高级工程师,主要从事水污染治理与环境资源规划工作,hc8812@163.com

    袁鹏(1979—),女,研究员,博士,主要从事流域水环境综合治理与生态修复研究,yuanpeng@craes.org.cn

  • 中图分类号: X522, X171

Study on the mitigation effect of submerged vegetation on greenhouse gases emission from rivers

  • 摘要:

    为揭示沉水植物生态修复在减缓河流温室气体释放方面的作用,在浙江省嘉善县选择盛家湾(有沉水植物)和东龙港(无沉水植物)2条河流,利用扩散模型法对其水体CO2、CH4、N2O释放通量进行24 h连续监测,并进行对比分析。结果表明:2条河流除盛家湾水体在16:00表现为CO2吸收外,其余监测时间内3种气体均呈过饱和状态,表现为向大气释放温室气体,24 h内比较,有沉水植物的盛家湾可减少89%的温室气体释放。将气体释放通量与环境因子进行相关性分析发现,盛家湾水体CO2释放通量与水温、pH、溶解氧浓度呈显著负相关,与氧化还原电位呈显著正相关,N2O释放通量与水温、pH、溶解氧浓度呈显著正相关,与氧化还原电位呈显著负相关;东龙港水体CO2释放通量与水温呈显著正相关,CH4释放通量与水温、溶解氧浓度呈显著正相关,N2O释放通量与水温呈显著正相关。

     

  • 图  1  盛家湾、东龙港位置分布及现状

    Figure  1.  Location distribution and status quo of Shengjiawan and Donglonggang

    图  2  盛家湾、东龙港水体CO2、CH4、N2O溶存浓度及饱和度

    Figure  2.  Dissolved concentration and saturation of CO2, CH4 and N2O in Shengjiawan and Donglonggang

    图  3  盛家湾、东龙港CO2、CH4、N2O释放通量

    Figure  3.  Fluxes of CO2, CH4 and N2O from Shengjiawan and Donglonggang

    图  4  2条河流环境因子变化规律

    Figure  4.  Variation law of environmental factors in two rivers

    表  1  盛家湾与东龙港CO2当量通量对比

    Table  1.   Comparison of CO2 equivalent fluxes between Shengjiawan and Donglonggang

    时段CO2当量通量/〔mg/(m2·d)〕CO2当量
    通量降低率/%
    盛家湾东龙港
    12:00—次日10:00
    (全天)
    4 930.5043 056.7089
    12:00—18:00,次日
    06:00—10:00(白天)
    3 022.6827 064.9289
    20:00—次日04:00(夜晚)1 907.8015 991.7888
    下载: 导出CSV

    表  2  国内部分河流水体CO2、CH4、N2O释放通量对比

    Table  2.   Comparison of CO2, CH4 and N2O emission fluxes from some rivers in China

    省(市)河流释放通量数据
    来源
    CO2/
    〔mg/(m2·h)〕
    CH4/
    〔μg/(m2·h)〕
    N2O/
    〔μg/(m2·h)〕
    浙江盛家湾47.41569.6730.38本研究
    东龙港468.31138.02156.17本研究
    南苕溪19.33文献[23]
    江苏金川河23.17文献[24]
    团结河19.20
    清江12.48文献[25]
    汉江6.65
    龙川江309.5文献[26]
    竹溪河150.9
    上海南港125.88183.9612.88文献[27]
    淀浦河99.12180.8453.48
    长泾147.84182.00
    大寨河163.56182.28
    张家河131.88197.64
    施贤港131.88573.12
    航塘港203.28
    吴淞江106.08
    天津海河10.39(冬季);
    39.38(夏季)
    66.48(冬季);
    335.88(夏季)
    27.04(冬季);
    15.64(夏季)
    文献[28]
    北京温榆河93.49(夏季)12 817.5文献[29]
    下载: 导出CSV

    表  3  环境因子与CO2、CH4、N2O释放通量的相关性分析

    Table  3.   Correlation analysis between environmental factors and CO2, CH4, N2O emission fluxes

    环境因子CO2释放通量CH4释放通量N2O释放通量
    盛家湾东龙港盛家湾东龙港盛家湾东龙港
    水温−0.825**0.663*0.3710.681*0.909**0.702*
    溶解氧浓度−0.965**0.340−0.0140.701*0.923**0.382
    pH−0.895**0.4450.1120.5250.895**0.494
    氧化还原电位0.897**−0.049−0.0880.014−0.802**−0.559
    NO3 -N浓度0.116−0.841**−0.007−0.266−0.1900.046
    NH4 +-N浓度0.160−0.039−0.305−0.219−0.492−0.342
    NO2 -N浓度0.431−0.441−0.2780.181−0.701*0.555
    DOC浓度−0.182−0.049−0.0490.2310.0670.021
      注:*表示P<0.05;**表示P<0.01。
    下载: 导出CSV
  • [1] YANG P, HE Q H, HUANG J F, et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China[J]. Atmospheric Environment,2015,115:269-277. doi: 10.1016/j.atmosenv.2015.05.067
    [2] 邓焕广, 张智博, 刘涛, 等.城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素[J]. 湖泊科学,2019,31(4):1055-1063. doi: 10.18307/2019.0409

    DENG H G, ZHANG Z B, LIU T, et al. Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake[J]. Journal of Lake Sciences,2019,31(4):1055-1063. doi: 10.18307/2019.0409
    [3] RASILO T, HUTCHINS R H S, RUIZ-GONZÁLEZ C, et al. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams[J]. Science of the Total Environment,2017,579:902-912. doi: 10.1016/j.scitotenv.2016.10.187
    [4] 王晓锋, 袁兴中, 陈槐, 等.河流CO2与CH4排放研究进展[J]. 环境科学,2017,38(12):5352-5366.

    WANG X F, YUAN X Z, CHEN H, et al. Review of CO2 and CH4 emissions from rivers[J]. Environmental Science,2017,38(12):5352-5366.
    [5] 汤梦瑶, 胡晓康, 王洪伟, 等.天津市滨海河流N2O扩散通量及控制因子[J]. 环境科学,2022,43(3):1481-1491.

    TANG M Y, HU X K, WANG H W, et al. Diffusive fluxes and controls of N2O from coastal rivers in Tianjin City[J]. Environmental Science,2022,43(3):1481-1491.
    [6] KUMAR A, YANG T, SHARMA M P. Greenhouse gas measurement from Chinese freshwater bodies: a review[J]. Journal of Cleaner Production,2019,233:368-378. doi: 10.1016/j.jclepro.2019.06.052
    [7] 系列解读(2)| 深入打好污染防治攻坚战 推动经济社会发展全面绿色转型[EB/OL]. (2021-11-09)[2023-01-07]. https://www.mee.gov.cn/zcwj/zcjd/202111/t20211109_959738.shtml.
    [8] 谭永洁, 王东启, 周立旻, 等.河流氧化亚氮产生和排放研究综述[J]. 地球与环境,2015,43(1):123-132. doi: 10.14050/j.cnki.1672-9250.2015.01.017

    TAN Y J, WANG D Q, ZHOU L M, et al. Review on the production and emission of nitrous oxide from rivers[J]. Earth and Environment,2015,43(1):123-132. doi: 10.14050/j.cnki.1672-9250.2015.01.017
    [9] 龚小杰, 袁兴中, 刘婷婷, 等.水生植物对淡水生态系统温室气体排放的影响研究进展[J]. 地球与环境,2020,48(4):496-509. doi: 10.14050/j.cnki.1672-9250.2020.48.063

    GONG X J, YUAN X Z, LIU T T, et al. Review on effects of aquatic plants on the greenhouse gas emission from freshwater ecosystems[J]. Earth and Environment,2020,48(4):496-509. doi: 10.14050/j.cnki.1672-9250.2020.48.063
    [10] GU X Z, CHEN K N, FAN C X. Preliminary evidence of effects of Phragmites australis growth on N2O emissions by laboratory microcosms[J]. Ecological Engineering,2015,83:33-38. doi: 10.1016/j.ecoleng.2015.06.008
    [11] 张璐, 荀凡, 沈悦, 等.持续性高藻输入河道温室气体时空排放特征及其影响因素[J]. 湖泊科学,2022,34(3):752-765. doi: 10.18307/2022.0305

    ZHANG L, XUN F, SHEN Y, et al. Spatiotemporal emission characteristics and influencing factors of greenhouse-gas emissions in persistent algae-input channels[J]. Journal of Lake Sciences,2022,34(3):752-765. doi: 10.18307/2022.0305
    [12] 刘瑞霞, 孙菲, 肖满, 等. 浙江嘉善东部区域盛家湾河道缓冲带及水生态修复实践[J]. 环境工程技术学报, 2022, 12(6): 2095-2104.

    LIU R X, SUN F, XIAO M, et al. Riverine buffer zone and water ecological restoration practice of Shengjiawan River course in eastern Jiashan County of Zhejiang Province[J]. Journal of Environmental Engineering Technology,2022, 12(6): 2095-2104.
    [13] 吴红宝. 典型河流生态系统碳氮温室气体扩散传输研究[D]. 芜湖: 安徽师范大学, 2017.
    [14] 孙玮玮, 王东启, 陈振楼, 等.长江三角洲平原河网水体溶存CH4和N2O浓度及其排放通量[J]. 中国科学(B辑:化学),2009,39(2):165-175.

    SUN W W, WANG D Q, CHEN Z L, et al. Dissolved CH4 and N2O concentrations and their discharge fluxes in plain river networks of the Yangtze River Delta[J]. Science in China (Series B:Chemistry),2009,39(2):165-175.
    [15] WEISS R F, PRICE B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry,1980,8(4):347-359. doi: 10.1016/0304-4203(80)90024-9
    [16] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography:Methods,2014,12(6):351-362. doi: 10.4319/lom.2014.12.351
    [17] JÄHNE B, LIBNER P, FISCHER R, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B:Chemical and Physical Meteorology,1989,41(2):177-195. doi: 10.3402/tellusb.v41i2.15068
    [18] 王晓锋. 大都市区河网体系碳排放研究[D]. 重庆: 重庆大学, 2017.
    [19] RAYMOND P A, ZAPPA C J, BUTMAN D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers[J]. Limnology and Oceanography: Fluids and Environments,2012,2(1):41-53. doi: 10.1215/21573689-1597669
    [20] 陈姝. 不同时间尺度城市河流水体温室气体排放特征[D]. 上海: 华东师范大学, 2022.
    [21] 余丹, 陈光程, 陈顺洋, 等.夏季九龙江口红树林土壤-大气界面温室气体通量的研究[J]. 应用海洋学学报,2014,33(2):175-182. doi: 10.3969/J.ISSN.2095-4972.2014.02.004

    YU D, CHEN G C, CHEN S Y, et al. Summer fluxes of atmospheric greenhouse gases from mangrove soils in Jiulongjiang Estuary[J]. Journal of Applied Oceanography,2014,33(2):175-182. doi: 10.3969/J.ISSN.2095-4972.2014.02.004
    [22] KUZYAKOV Y, EHRENSBERGER H, STAHR K. Carbon partitioning and below-ground translocation by Lolium perenne[J]. Soil Biology and Biochemistry,2001,33(1):61-74. doi: 10.1016/S0038-0717(00)00115-2
    [23] 袁淑方, 王为东.太湖流域源头溪流氧化亚氮(N2O)释放特征[J]. 生态学报,2012,32(20):6279-6288. doi: 10.5846/stxb201203270420

    YUAN S F, WANG W D. Characteristics of nitrous oxide (N2O) emission from a headstream in the upper Taihu Lake Basin[J]. Acta Ecologica Sinica,2012,32(20):6279-6288. doi: 10.5846/stxb201203270420
    [24] 韩洋. 南京市河流温室气体排放通量及其影响因素的研究[D]. 南京: 南京信息工程大学, 2013.
    [25] 赵静. 长江和海南东部典型水体中溶存甲烷和氧化亚氮的分布与释放[D]. 青岛: 中国海洋大学, 2009.
    [26] 罗佳宸. 长江上游纵向峡谷型河流水-气界面CO2通量及驱动因素研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2019.
    [27] 谭永洁. 上海市河流沉积物温室气体的排放与产生机制[D]. 上海: 华东师范大学, 2014.
    [28] 胡晓康, 昝逢宇, 常素云, 等.天津市海河温室气体排放特征与影响因素研究[J]. 生态环境学报,2021,30(4):771-780. doi: 10.16258/j.cnki.1674-5906.2021.04.013

    HU X K, ZAN F Y, CHANG S Y, et al. Patterns and influencing factors of greenhouse gas emission from Haihe River in Tianjin[J]. Ecology and Environmental Sciences,2021,30(4):771-780. doi: 10.16258/j.cnki.1674-5906.2021.04.013
    [29] 吴瑶洁, 李海英, 陈文重, 等.夏季温榆河温室气体释放特征与影响因素研究[J]. 环境科学与技术,2016,39(5):8-16.

    WU Y J, LI H Y, CHEN W Z, et al. Effects and emission characteristics of greenhouse gases from Wenyu River in summer[J]. Environmental Science & Technology,2016,39(5):8-16.
    [30] 杨平. 闽江河口湿地水产养殖塘水-气界面温室气体通量研 究[D]. 福州: 福建师范大学, 2013.
    [31] 陈袁波. 不同水体温室气体排放通量变化规律及其影响因素研究: 以南京为例[D]. 南京: 南京信息工程大学, 2021.
    [32] 常思琦, 王东启, 俞琳, 等.上海城市河流温室气体排放特征及其影响因素[J]. 环境科学研究,2015,28(9):1375-1381. doi: 10.13198/j.issn.1001-6929.2015.09.06

    CHANG S Q, WANG D Q, YU L, et al. Greenhouse gas emission characteristics from urban rivers in Shanghai[J]. Research of Environmental Sciences,2015,28(9):1375-1381. doi: 10.13198/j.issn.1001-6929.2015.09.06
    [33] 杨平, 仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报,2015,35(20):6868-6880.

    YANG P, TONG C. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems: a review[J]. Acta Ecologica Sinica,2015,35(20):6868-6880.
    [34] ANGLE J C, MORIN T H, SOLDEN L M, et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions[J]. Nature Communications,2017,8:1567. doi: 10.1038/s41467-017-01753-4
    [35] 常思琦. 上海市河流N2O和CH4排放特征及沉积物微生物群落的影响[D]. 上海: 华东师范大学, 2015.
    [36] ZENG F W, MASIELLO C A. Sources of CO2 evasion from two subtropical rivers in North America[J]. Biogeochemistry,2010,100(1):211-225.
    [37] 侯璐, 郭梦婕, 常思琦, 等.上海黄浦江两支流河流甲烷含量研究[J]. 湖北民族学院学报(自然科学版),2015,33(2):182-185. doi: 10.13501/j.cnki.42-1569/n.2015.06.018

    HOU L, GUO M J, CHANG S Q, et al. Study on correlation between the methane generation and environmental factors from two tributaries of Huangpu River[J]. Journal of Hubei University for Nationalities (Natural Science Edition),2015,33(2):182-185. ⊗ doi: 10.13501/j.cnki.42-1569/n.2015.06.018
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  118
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24

目录

    /

    返回文章
    返回