Hydrodynamic water quality characteristics and driving mechanism in Hengshui Lake
-
摘要:
为探究衡水湖水动力水质特征,在现场调查的基础上,基于EFDC(Environmental Fluid Dynamics Code)模型,构建衡水湖二维水动力水质模型,分别用2018年和2019年的水位、温度和水质等观测数据对模型进行率定和验证,该模型可较好地反映衡水湖的水动力和水质情况。在此基础上,模拟衡水湖水动力学和水质在空间和时间的变化特征,分析衡水湖水动力水质演化的驱动机制。结果显示:衡水湖水动力较弱,补水是改善水动力的重要方式,对于保持湖泊生态水位,提升水交换能力有促进作用;补水带入的大量营养盐对湖区水质有显著影响,各站点的水质指标在补水期产生较大波动,其中王口闸和小湖心受影响较大。在进水水质较差的情况下,补水容易使湖泊水体污染加重,控制入湖水质仍然不能忽视。
Abstract:In order to explore the characteristics of the hydrodynamic water quality of Hengshui Lake, a two-dimensional hydrodynamic water quality model of Hengshui Lake was built based on the Environmental Fluid Dynamics Code (EFDC) model on the basis of field investigation. The model was calibrated and validated using observation data such as water level, temperature, and water quality from 2018 and 2019, respectively, to better reflect the hydrodynamic and water quality conditions of Hengshui Lake. The characteristics of the hydrodynamic and water quality changes in space and time of Hengshui Lake were simulated, and the driving mechanism of the hydrodynamic water quality evolution of the lake was analyzed. The results showed that the hydrodynamic force of Hengshui Lake was weak, and water replenishment was an important way to improve the hydrodynamic force, which had a promoting effect on maintaining the ecological water level of the lake and improving the water exchange capacity. The large amount of nutrients brought in by water replenishment had a significant impact on the water quality of the lake area. The water quality indicators at various stations fluctuated greatly during the water replenishment period, with Wangkou Gate and Xiaohuxin stations being greatly affected. In the case of poor inflow water quality, water replenishment could easily aggravate lake water pollution, and control of inflow water quality could not be ignored.
-
Key words:
- Hengshui Lake /
- wetlands /
- EFDC model /
- hydrodynamic mechanism
-
表 1 初始水质条件
Table 1. Initial water quality conditions
水质组分 初始浓度/(mg/L) 难溶颗粒态有机磷(ROP) 0.003 活性颗粒态有机磷(LOP) 0.009 溶解态有机磷(DOP) 0.013 总磷(TP) 0.025 难溶颗粒态有机氮(RON) 0.146 活性颗粒态有机氮(LON) 0.170 溶解态有机氮(DON) 0.170 氨氮(NH4 +) 0.270 硝态氮(NO3 −/NO2 −) 0.485 化学需氧量(COD) 19.000 溶解氧(DO) 10.000 表 2 主要水质模拟参数
Table 2. Key water quality simulation parameters
参数 取值 难溶颗粒态有机磷最小水解速率/d−1 0.005 活性颗粒态有机磷最小水解速率/d−1 0.075 溶解态有机磷最小矿化速率/d−1 0.1 最大硝化率/d−1 0.07 硝化氧半饱和常数/(g/m3,以O2计) 1 硝化氮半饱和常数/(g/m3,以N计) 1 硝化作用的参考温度/℃ 27 硝化作用的次优温度系数 0.004 5 硝化作用的超优温度系数 0.004 5 难溶颗粒态有机氮最小水解速率/d−1 0.005 活性颗粒态有机氮最小水解速率/d−1 0.075 溶解态有机氮最小矿化速率/d−1 0.015 表 3 率定结果误差分析
Table 3. Error analysis of calibration results
指标 平均绝对误差 平均相对误差/% 最大绝对误差 相关系数 DO浓度 1.175 11.4 3.766 0.873 温度 2.902 38.8 6.615 0.955 TN浓度 0.127 8.8 0.235 0.924 水位 0.031 0.2 0.112 0.993 表 4 验证结果误差分析
Table 4. Error analysis of validation results
指标 平均绝对误差 平均相对误差/% 最大绝对误差 相关系数 DO浓度 0.830 9.2 2.357 0.901 温度 2.641 19.6 8.344 0.919 TN浓度 0.285 20.6 0.938 0.857 水位 0.074 0.4 0.385 0.976 表 5 各站点的水质指标平均值
Table 5. Average value of water quality indicators at each station
mg/L 站点 TN浓度 TP浓度 COD 王口闸 1.845 0.070 19.774 小湖心 2.287 0.071 16.352 大湖心 1.706 0.057 18.399 大赵闸 1.389 0.044 15.898 表 6 王口闸站点在不同进水情况下的水质指标变化
Table 6. Water quality index changes of Wangkou Gate station under different inflow conditions
mg/L 水质指标 水体 2018年
春季补水2018年
秋季补水2019年
春季补水2019年
秋季补水TN浓度 入湖水体 1.304 2.527 0.477 1.144 补水前水体 1.628 1.165 2.366 2.038 补水后水体 1.605 3.719 1.317 3.536 TP浓度 入湖水体 0.086 0.082 0.026 0.045 补水前水体 0.042 0.068 0.075 0.067 补水后水体 0.108 0.174 0.069 0.111 COD 入湖水体 16.791 16.510 7.494 10.615 补水前水体 19.643 9.006 17.298 19.851 补水后水体 20.521 20.995 23.578 20.097 注:入湖水体的水质指标为平均值,补水前水体、补水后水体的水质指标为瞬时值。 -
[1] KADLEC R H. Constructed marshes for nitrate removal[J]. Critical Reviews in Environmental Science and Technology,2012,42(9):934-1005. doi: 10.1080/10643389.2010.534711 [2] MOOMAW W R, CHMURA G L, DAVIES G T, et al. Wetlands in a changing climate: science, policy and management[J]. Wetlands,2018,38(2):183-205. doi: 10.1007/s13157-018-1023-8 [3] LIU W W, GUO Z L, WANG H N, et al. Spatial-temporal variations for pollution assessment of heavy metals in Hengshui Lake of China[J]. Water,2022,14(3):458. doi: 10.3390/w14030458 [4] 张嘉雯, 魏健, 吕一凡, 等.衡水湖沉积物中典型持久性有机污染物污染特征与风险评估[J]. 环境科学,2020,41(3):1357-1367.ZHANG J W, WEI J, LÜ Y F, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Hengshui Lake[J]. Environmental Science,2020,41(3):1357-1367. [5] HUANG J, YANG H, HE W, et al. Ecological service value tradeoffs: an ecological water replenishment model for the Jilin Momoge National Nature Reserve, China[J]. International Journal of Environmental Research and Public Health,2022,19(6):3263. doi: 10.3390/ijerph19063263 [6] YAN Z Q, ZHOU Z H, SANG X F, et al. Water replenishment for ecological flow with E-WAS framework: a case study of the Longgang River Basin, Shenzhen, China[J]. Proceedings of the International Association of Hydrological Sciences,2020,383:327-339. doi: 10.5194/piahs-383-327-2020 [7] 刘魏魏, 郭子良, 王大安, 等.衡水湖湿地水环境质量时空变化特征及污染源分析[J]. 环境科学,2021,42(3):1361-1371.LIU W W, GUO Z L, WANG D A, et al. Spatial-temporal variation of water environment quality and pollution source analysis in Hengshui Lake[J]. Environmental Science,2021,42(3):1361-1371. [8] ZHANG Z Q, WEI S Z, LIU J X. Pollution characteristics and risk assessment of heavy metal elements in sediment in the west lake of Hengshui Lake[J]. Advances in Materials Science and Engineering,2021,2021:1-6. [9] WEI Y Y, ZHANG M Y, CUI L J, et al. Winter decomposition of emergent macrophytes affects water quality under ice in a temperate shallow lake[J]. Water,2020,12(9):2640. doi: 10.3390/w12092640 [10] 张嘉雯, 魏健, 刘利, 等.衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学,2020,41(12):5389-5399. doi: 10.13227/j.hjkx.202004237ZHANG J W, WEI J, LIU L, et al. Distribution characteristics and pollution assessment of nutrients in Hengshui Lake sediments[J]. Environmental Science,2020,41(12):5389-5399. doi: 10.13227/j.hjkx.202004237 [11] 温晓君, 陈辉, 白军红.基于模糊矩阵的衡水湖水环境质量评价及分析[J]. 水土保持研究,2016,23(2):292-296.WEN X J, CHEN H, BAI J H. Evaluation and analysis on water environmental quality of Hengshui Lake based on fuzzy comprehensive evaluation method[J]. Research of Soil and Water Conservation,2016,23(2):292-296. [12] 吴时强, 戴江玉, 石莎.引水工程湖泊水生态效应评估研究进展[J]. 南昌工程学院学报,2018,37(6):14-26.WU S Q, DAI J Y, SHI S. Progress in assessment of hydro-ecological effects in lakes induced by water diversion[J]. Journal of Nanchang Institute of Technology,2018,37(6):14-26. [13] 张以飞, 王玉琳, 汪靓.EFDC模型概述与应用分析[J]. 环境影响评价,2015,37(3):70-72.ZHANG Y F, WANG Y L, WANG L. EFDC overview and application analysis[J]. Environmental Impact Assessment,2015,37(3):70-72. [14] VILLOTA-LÓPEZ C, RODRÍGUEZ-CUEVAS C, TORRES-BEJARANO F, et al. Applying EFDC Explorer model in the Gallinas River, Mexico to estimate its assimilation capacity for water quality protection[J]. Scientific Reports,2021,11(1):1-16. doi: 10.1038/s41598-020-79139-8 [15] ZHENG L, WANG H P, LIU C, et al. Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models[J]. Journal of Environmental Management,2021,295:113060. doi: 10.1016/j.jenvman.2021.113060 [16] TANG G L, ZHU Y Q, WU G Z, et al. Modelling and analysis of hydrodynamics and water quality for rivers in the northern cold region of China[J]. International Journal of Environmental Research and Public Health,2016,13(4):408. doi: 10.3390/ijerph13040408 [17] LI Y P, TANG C Y, WANG C, et al. Improved Yangtze River diversions: are they helping to solve algal bloom problems in Lake Taihu, China[J]. Ecological Engineering,2013,51:104-116. doi: 10.1016/j.ecoleng.2012.12.077 [18] DAI C, TAN Q, LU W T, et al. Identification of optimal water transfer schemes for restoration of a eutrophic lake: an integrated simulation-optimization method[J]. Ecological Engineering,2016,95:409-421. doi: 10.1016/j.ecoleng.2016.06.080 [19] 崔希东, 尹新明, 尹俊岭.衡水湖湿地水环境现状及治理措施研究[J]. 海河水利,2011(1):18-20. doi: 10.3969/j.issn.1004-7328.2011.01.006CUI X D, YIN X M, YIN J L. Study on the present situation of Hengshui Lake wetland water environment and its control measures[J]. Haihe Water Resources,2011(1):18-20. doi: 10.3969/j.issn.1004-7328.2011.01.006 [20] 江大勇.衡水湖动植物资源调查研究[J]. 现代农村科技,2021(3):98. [21] LIANG C, LI X W, ZHUGE H J. The analysis and evaluation of wetland restoration scenarios in the Hengshui Lake national nature reserve, Hebei, China[J]. Advanced Materials Research, 2013, 864/865/866/867: 1121-1127. [22] 王贺年, 张曼胤, 郭子良, 等.衡水湖底泥中7种重金属元素含量的分布及其潜在生态风险评价[J]. 湿地科学,2020,18(2):191-199.WANG H N, ZHANG M Y, GUO Z L, et al. Distribution of contents of 7 kinds of heavy metal elements in the sediments of Hengshui Lake and their ecological risk assessment[J]. Wetland Science,2020,18(2):191-199. [23] 王贺年, 张曼胤, 崔丽娟, 等.基于DPSIR模型的衡水湖湿地生态环境质量评价[J]. 湿地科学,2019,17(2):193-198.WANG H N, ZHANG M Y, CUI L J, et al. Evaluation of ecological environment quality of Hengshui Lake wetlands based on DPSIR model[J]. Wetland Science,2019,17(2):193-198. [24] 王永亮.衡水湖水位影响因子机理分析与预测预警研究[J]. 水科学与工程技术,2020(3):55-60.WANG Y L. The mechanism of the influence factors of the water level of Hengshui Lake and its prediction and early warning[J]. Water Sciences and Engineering Technology,2020(3):55-60. [25] GAO L L, LI D L. A review of hydrological/water-quality models[J]. Frontiers of Agricultural Science and Engineering,2014,1(4):267. doi: 10.15302/J-FASE-2014041 [26] HAMRICK J. A Three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects[R]. Williamsburg, Virginia: Virginia Institute of Marine Science, College of William and Mary, 1992. [27] WU G Z, XU Z X. Prediction of algal blooming using EFDC model: case study in the Daoxiang Lake[J]. Ecological Modelling,2011,222(6):1245-1252. doi: 10.1016/j.ecolmodel.2010.12.021 [28] 赵艳民, 马迎群, 张雷, 等.基于水龄的河道型水库总磷评价标准参考值研究[J]. 水生态学杂志,2022,43(3):51-56.ZHAO Y M, MA Y Q, ZHANG L, et al. An assessment standard reference value for total phosphorus in river-type reservoirs based on water residence time[J]. Journal of Hydroecology,2022,43(3):51-56. [29] XU S, HE G J, FANG H W, et al. Parameter uncertainty and sensitivity analysis of the three Gorges Reservoir and Xiangxi River EFDC model[J]. Journal of Hydrology,2022,610:127881. doi: 10.1016/j.jhydrol.2022.127881 [30] WU T, SU B L, WU H X, et al. Scenario optimization of water supplement and outflow management in Yilong Lake based on the EFDC model[J]. Hydrology Research,2022,53(4):519-531. doi: 10.2166/nh.2022.113 [31] LÜ C, ZHANG F, LIU Z H, et al. Three-dimensional numerical simulation of sediment transport in Lake Tai based on EFDC model[J]. Journal of Food, Agriculture and Environment,2013,11:1343-1348. [32] 郝文彬, 唐春燕, 滑磊, 等.引江济太调水工程对太湖水动力的调控效果[J]. 河海大学学报(自然科学版),2012,40(2):129-133.HAO W B, TANG C Y, HUA L, et al. Effects of water diversion from Yangtze River to Taihu Lake on hydrodynamic regulation of Taihu Lake[J]. Journal of Hohai University (Natural Sciences),2012,40(2):129-133. [33] QI L Y, XIONG A L, WU F W, et al. A real-time assessment of aquatic ecological health using a process-based model: an example from Lake Poyang, China[J]. Frontiers in Environmental Science,2022,10:881335. doi: 10.3389/fenvs.2022.881335 [34] 张锦鹏, 吴越, 田泽斌, 等.基于EFDC模型的洱海水温模拟[J]. 环境工程技术学报,2020,10(3):368-376.ZHANG J P, WU Y, TIAN Z B, et al. Water temperature simulation of Lake Erhai based on EFDC model[J]. Journal of Environmental Engineering Technology,2020,10(3):368-376. [35] CHEN L Q, LI L H, ZHOU Y Q, et al. Effect of low temperature water discharged from large reservoir on aquatic ecosystem and agricultural production[J]. IOP Conference Series:Earth and Environmental Science,2018,191:012065. doi: 10.1088/1755-1315/191/1/012065 [36] TORRES-BEJARANO F M, PADILLA J, RODRÍGUEZ-CUEVAS C, et al. Hydrodynamics modelling utilizing the EFDC explorer model for the sustainable management of Canal del Dique-Guajaro hydrosystem, Colombia[J]. WIT Transactions on the Built Environment,2015,168:423-434. [37] LI Y P, ACHARYA K, YU Z B. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China[J]. Ecological Engineering,2011,37(2):325-334. doi: 10.1016/j.ecoleng.2010.11.024 [38] 于珊, 李一平, 程一鑫, 等.调水引流工程对平原河网水动力调控的效果[J]. 湖泊科学,2021,33(2):462-473. doi: 10.18307/2021.0212YU S, LI Y P, CHENG Y X, et al. The impacts of water diversion on hydrodynamic regulation of plain river network[J]. Journal of Lake Sciences,2021,33(2):462-473. doi: 10.18307/2021.0212 [39] 谢培, 乔飞, 秦延文, 等.三峡库区水质和水龄数值模拟研究[J]. 环境科学学报,2021,41(2):574-582.XIE P, QIAO F, QIN Y W, et al. Numerical simulation of water quality and water age in the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae,2021,41(2):574-582. [40] 潘泓哲, 李一平, 唐春燕, 等.多目标优化下平原河网引调水改善水环境效果评估[J]. 湖泊科学,2021,33(4):1138-1152. doi: 10.18307/2021.0415PAN H Z, LI Y P, TANG C Y, et al. Evaluation of the effect of water diversion on improving water environment in plain river network under the multi-objective optimization[J]. Journal of Lake Sciences,2021,33(4):1138-1152. doi: 10.18307/2021.0415 [41] 张又, 刘凌, 姚秀岚, 等.“引江济太”调水中望虞河水质变化的规律[J]. 水资源保护,2013,29(2):53-57.ZHANG Y, LIU L, YAO X L, et al. Variation of water quality of Wangyu River during water diversion from Yangtze River to Taihu Lake[J]. Water Resources Protection,2013,29(2):53-57. [42] 陈焰, 夏瑞, 王璐, 等.基于SWMM-EFDC耦合模拟的新凤河流域水环境治理工程效应评估[J]. 环境工程技术学报,2021,11(4):777-788. ⊕