留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油气田采出水锂资源回收可行性、技术现状及展望

赵紫伊 周雪 王铁夫 李承琛 孙广东 孔繁鑫 杨德敏 陈进富 张颖

赵紫伊,周雪,王铁夫,等.油气田采出水锂资源回收可行性、技术现状及展望[J].环境工程技术学报,2023,13(4):1434-1443 doi: 10.12153/j.issn.1674-991X.20221190
引用本文: 赵紫伊,周雪,王铁夫,等.油气田采出水锂资源回收可行性、技术现状及展望[J].环境工程技术学报,2023,13(4):1434-1443 doi: 10.12153/j.issn.1674-991X.20221190
ZHAO Z Y,ZHOU X,WANG T F,et al.Feasibility, technical status and prospects of lithium recovery from produced water in oil and gas fields[J].Journal of Environmental Engineering Technology,2023,13(4):1434-1443 doi: 10.12153/j.issn.1674-991X.20221190
Citation: ZHAO Z Y,ZHOU X,WANG T F,et al.Feasibility, technical status and prospects of lithium recovery from produced water in oil and gas fields[J].Journal of Environmental Engineering Technology,2023,13(4):1434-1443 doi: 10.12153/j.issn.1674-991X.20221190

油气田采出水锂资源回收可行性、技术现状及展望

doi: 10.12153/j.issn.1674-991X.20221190
基金项目: 国家自然科学基金面上项目(52270014);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0128)
详细信息
    作者简介:

    赵紫伊 (2001—),女,研究方向为油气田采出水锂资源回收,2020010389@student.cup.edu.cn

    通讯作者:

    孔繁鑫(1985—),男,副教授,博士,研究方向为膜法水处理和石油石化污染控制与资源化技术,kfx11@cup.edu.cn

  • 中图分类号: X741

Feasibility, technical status and prospects of lithium recovery from produced water in oil and gas fields

  • 摘要:

    锂资源高需求低产量的供需矛盾使得开发新的锂资源刻不容缓,而油气田采出水中锂资源丰富,是潜在的液体锂资源,因此分析油气田采出水提锂可行性并提出可行技术路线具有重要的现实意义。首先通过对油气田采出水的组成进行分析,明确了油气田采出水的水质特性;然后对国内主要盆地锂资源禀赋进行分析,强调其复杂的有机-无机高度混杂体系中有机物浓度高且离子组成丰富对提锂的挑战;最后从水质特性、水处理技术和油气田采出水锂资源高效回收技术出发,阐述盐湖提锂技术如沉淀法、膜分离、吸附法、溶剂萃取法和耦合技术对于油气田采出水提锂的适用性。结合提锂实践和产业现状,认为“预处理+富集浓缩(吸附/萃取-膜分离)+沉淀”是可行的提锂技术路线。

     

  • 图  1  Eramet的锂提取工艺[44]

    Figure  1.  Lithium extraction process by Eramet

    图  2  同时回收锂和去除有机物的电化学系统原理[55]

    Figure  2.  Schematic of the electrochemical system for simultaneous lithium recovery and organic pollutant removal

    图  3  Ozone Tek公司耦合提锂系统

    Figure  3.  Ozone Tek INC coupling lithium extraction system

    表  1  现阶段沉淀法提锂技术特点

    Table  1.   Characteristics of precipitation lithium extraction technology at present stage

    技术名称沉淀剂优点缺点
    分步沉淀[30]NaOH、Na2CO3流程简单,成本低吸附共沉淀使锂损失大
    改进碳酸化沉淀[30]
    Ca(OH)2、Na2CO3工艺简单,技术成熟;避免共沉淀损失;
    可大批量处理卤水
    成本高,需加入大量沉淀剂
    硼镁、硼锂共沉淀[31]硫酸盐、HCl或H2SO4易分离,锂回收率高成本高
    铝酸盐沉淀[32]AlCl3·nH2O或CaO·Al2O3、KOH或NaOH产品纯度高,回收率高水耗和能耗大,腐蚀设备
    下载: 导出CSV

    表  2  常见的无机金属氧化物提锂吸附技术特点

    Table  2.   Characteristics of lithium adsorption technology for common inorganic metal oxides

    吸附剂吸附原理适用场景技术优势技术局限
    铝系吸附剂[50] 表面自由酸性羟基与Li+产生含羟配合物 氯化物/硫酸镁亚型中性(pH为4~7)盐湖卤水 选择性高,成本低,已实现工业化 吸附容量小,在酸性或碱性条件下不稳定
    钛系锂离子筛型[51] 离子交换和位阻效应 碳酸型强碱性(pH>10)盐湖卤水 稳定性好,吸附量大,溶损率低(<0.02%) 合成较困难
    锰系锂离子筛型[52-54] 氧化还原、离子交换和复合反应机制 碳酸盐型盐湖卤水及强碱性(pH>10)盐湖卤水 吸附量大,易制备 吸附过程中溶损率高(约0.1%)
    下载: 导出CSV

    表  3  常见萃取提锂技术特点

    Table  3.   Technical characteristics of lithium extraction

    萃取剂名称技术优势技术局限
    有机磷类萃取剂[58]选择性高,萃取
    率达95%
    成本高,在萃取过程中溶损严重,对设备强侵蚀,酸性反萃过程中易降解
    β-双酮类萃取剂[59]萃取率高协萃剂贵,在碱性条件下
    溶损严重
    冠醚类[60]选择性高,易萃取合成工艺繁杂,价格昂贵
    离子液体[60-61]化学性质稳定,
    挥发性低
    成本高,制约了工业应用
    下载: 导出CSV

    表  4  不同提锂技术在液体锂资源中的适用范围

    Table  4.   Application scope of lithium extraction technology in liquid lithium resources

    锂提取技术 适用范围
    Mg2+/Li+ 碱金属离子(Na+ Li+浓度/
    (mg/L)
    沉淀法 >1 000
    吸附法 >10
    膜分离 NF膜法 × 10~1 000
    选择性
    电渗析法
    200~1 000
      注:“高”指Mg2+/Li+一般高于10的盐湖卤水;“低”指Mg2+/Li+低的盐湖卤水。√表示该技术适用于含有较高浓度的共存碱金属离子(Na+)的盐湖盐水;×表示该技术不适合。
    下载: 导出CSV

    表  5  提锂技术用于油气田采出水的问题及对策

    Table  5.   Problems and countermeasures of lithium extraction technology in produced water in oil and gas fields

    提锂技术问题对策
    有机物共存离子有机物杂质离子
    吸附法 有机物与金属吸附剂络合造成其吸附能力降低 二价阳离子(Mg2+)与Li+竞争性吸附 进行预处理,选用高选择性吸附剂 强化预处理,去除杂质离子
    溶剂萃取法 有机物抑制萃取作用
    二价阳离子和碱金属离子(Na+)与Li+竞争萃取 使用非氟化离子液体,进行多阶段萃取 使用非氟化离子液体,进行多阶段萃取
    膜分离 有机物会造成严重的膜污染,降低使用寿命 碱金属离子(Na+)与Li+竞争通过膜,造成膜的选择性下降 进行预处理,发展抗污染膜 强化预处理,提高膜选择性

    沉淀法

    二价阳离子(Mg2+)浓度高,除杂沉淀剂消耗量大,碱金属离子(Na+)竞争沉淀 强化预处理,去除杂质离子 与膜基技术、溶剂萃取法或吸附法耦合
    下载: 导出CSV
  • [1] 韩佳欢, 乜贞, 方朝合, 等.中国锂资源供需现状分析[J]. 无机盐工业,2021,53(12):61-66. doi: 10.19964/j.issn.1006-4990.2021-0002

    HAN J H, NIE Z, FANG C H, et al. Analysis of existing circumstance of supply and demand on China's lithium resources[J]. Inorganic Chemicals Industry,2021,53(12):61-66. doi: 10.19964/j.issn.1006-4990.2021-0002
    [2] OFFICE G P. Mineral commodity summaries 2020[M]. Washiton DC: Government Printing Office, 2021.
    [3] 王浩, 黄根红, 陈瑞英, 等.全球锂资源供需展望及锂产品价格预测[J]. 中国有色冶金,2022,51(6):1-11. doi: 10.19612/j.cnki.cn11-5066/tf.2022.06.001

    WANG H, HUANG G H, CHEN R Y, et al. Supply and demand outlook of lithium resources and price forecast of lithium products[J]. China Nonferrous Metallurgy,2022,51(6):1-11. doi: 10.19612/j.cnki.cn11-5066/tf.2022.06.001
    [4] 王艺博, 郭玉文, 孙峙, 等.我国废动力电池回收处理过程环境风险及其管理对策探讨[J]. 环境工程技术学报,2019,9(2):207-212. doi: 10.12153/j.issn.1674-991X.2018.10.090

    WANG Y B, GUO Y W, SUN Z, et al. Discussion on environmental risk analysis and management countermeasures of waste power batteries recovery in China[J]. Journal of Environmental Engineering Technology,2019,9(2):207-212. doi: 10.12153/j.issn.1674-991X.2018.10.090
    [5] TIAN L, LIU Y H, TANG P, et al. Lithium extraction from shale gas flowback and produced water using H1.33Mn1.67O4 adsorbent[J]. Resources, Conservation and Recycling,2022,185:106476. doi: 10.1016/j.resconrec.2022.106476
    [6] 王秋舒, 元春华, 许虹.全球锂矿资源分布与潜力分析[J]. 中国矿业,2015,24(2):10-17. doi: 10.3969/j.issn.1004-4051.2015.02.005

    WANG Q S, YUAN C H, XU H. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine,2015,24(2):10-17. doi: 10.3969/j.issn.1004-4051.2015.02.005
    [7] 崔晓林. 中国锂矿资源需求预测及供需分析[D]. 北京: 中国地质大学(北京), 2017.
    [8] 马哲, 李建武.中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业,2018,27(10):1-7.

    MA Z, LI J W. Analysis of China's lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine,2018,27(10):1-7.
    [9] PEIRÓ L T, MÉNDEZ G V, AYRES R U. Lithium: sources, production, uses, and recovery outlook[J]. JOM,2013,65(8):986-996. doi: 10.1007/s11837-013-0666-4
    [10] HOU J, ZHANG H C, THORNTON A W, et al. Lithium extraction by emerging metal-organic framework-based membranes[J]. Advanced Functional Materials,2021,31(46):2105991. doi: 10.1002/adfm.202105991
    [11] TASKER T L, WARNER N R, BURGOS W D. Geochemical and isotope analysis of produced water from the Utica/Point Pleasant Shale, Appalachian Basin[J]. Environmental Science:Processes & Impacts,2020,22(5):1224-1232.
    [12] 李维东.油田采出水的资源化方向[J]. 新疆地质,2002,20(2):175.

    LI W D. Resource utilization direction of oilfield produced water[J]. Xinjiang Geology,2002,20(2):175.
    [13] SALEM F, THIEMANN T. Produced water from oil and gas exploration: problems, solutions and opportunities[J]. Journal of Water Resource and Protection,2022,14(2):142-185. doi: 10.4236/jwarp.2022.142009
    [14] LIU Y Q, LU H, LI Y D, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of the Total Environment,2021,775:145485. doi: 10.1016/j.scitotenv.2021.145485
    [15] XIAO F. Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements[J]. Science of the Total Environment,2021,770:145283. doi: 10.1016/j.scitotenv.2021.145283
    [16] LI J S, CHEN F K, LING Z Y, et al. Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: geochemical and Li isotopic evidence[J]. Ore Geology Reviews,2021,139:104481. doi: 10.1016/j.oregeorev.2021.104481
    [17] XIE W C, TIAN L, TANG P, et al. Shale gas wastewater characterization: comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides[J]. Water Research,2022,220:118703. doi: 10.1016/j.watres.2022.118703
    [18] 高娟琴, 王登红, 王伟, 等.国内外主要油(气)田水中锂提取现状及展望[J]. 地质学报,2019,93(6):1489-1500. doi: 10.3969/j.issn.0001-5717.2019.06.024

    GAO J Q, WANG D H, WANG W, et al. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters[J]. Acta Geologica Sinica,2019,93(6):1489-1500. doi: 10.3969/j.issn.0001-5717.2019.06.024
    [19] 矿产资源工业要求手册: 2014年修订本[M]. 北京: 地质出版社, 2010.
    [20] 蔡春芳, 梅博文, 李伟.塔里木盆地油田水文地球化学[J]. 地球化学,1996,25(6):614-623. doi: 10.3321/j.issn:0379-1726.1996.06.012

    CAI C F, MEI B W, LI W. The hydrogeochemistry of oil-fields in Tarim Basin[J]. Geochimica,1996,25(6):614-623. doi: 10.3321/j.issn:0379-1726.1996.06.012
    [21] 樊馥, 郑绵平, 张永生, 等.靖边气田富Br、I、Li+、K+油田水的发现及对找钾的启示[J]. 吉林大学学报(地球科学版),2012,42(增刊 2):141-147.

    FAN F, ZHENG M P, ZHANG Y S, et al. Discovery of oil field water with high content of Br, I, Li+, K+ as the indication of finding potash in Jingbian gas field[J]. Journal of Jilin University (Earth Science Edition),2012,42(Suppl 2):141-147.
    [22] SUN Y, WU M H, TONG T Z, et al. Organic compounds in Weiyuan shale gas produced water: identification, detection and rejection by ultrafiltration-reverse osmosis processes[J]. Chemical Engineering Journal,2021,412:128699. doi: 10.1016/j.cej.2021.128699
    [23] XIE W C, TANG P, WU Q D, et al. Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation[J]. Chemical Engineering Journal,2022,428:132624. doi: 10.1016/j.cej.2021.132624
    [24] WANG B, XIONG M Y, WANG P J, et al. Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China[J]. Environmental Science and Pollution Research,2020,27(21):26532-26542. doi: 10.1007/s11356-020-08670-y
    [25] 韩佳君, 周训, 姜长龙, 等.柴达木盆地西部地下卤水水化学特征及其起源演化[J]. 现代地质,2013,27(6):1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025

    HAN J J, ZHOU X, JIANG C L, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam Basin[J]. Geoscience,2013,27(6):1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025
    [26] 李洪普, 郑绵平, 侯献华, 等.柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征[J]. 地球学报,2015,36(1):41-50. doi: 10.3975/cagsb.2015.01.05

    LI H P, ZHENG M P, HOU X H, et al. Control factors and water chemical characteristics of potassium-rich deep brine in nanyishan structure of western Qaidam Basin[J]. Acta Geoscientica Sinica,2015,36(1):41-50. doi: 10.3975/cagsb.2015.01.05
    [27] 丁鹏元, 党伟, 王莉莉, 等.油田采出水回注处理技术现状及展望[J]. 现代化工,2019,39(3):21-25. doi: 10.16606/j.cnki.issn0253-4320.2019.03.005

    DING P Y, DANG W, WANG L L, et al. Review and prospect of technologies for reinjection treatment of oilfield produced water[J]. Modern Chemical Industry,2019,39(3):21-25. doi: 10.16606/j.cnki.issn0253-4320.2019.03.005
    [28] 张亮, 杨卉芃, 柳林, 等.全球提锂技术进展[J]. 矿产保护与利用,2020,40(5):24-31. doi: 10.13779/j.cnki.issn1001-0076.2020.05.004

    ZHANG L, YANG H P, LIU L, et al. Global technology trends of lithium extraction[J]. Conservation and Utilization of Mineral Resources,2020,40(5):24-31. doi: 10.13779/j.cnki.issn1001-0076.2020.05.004
    [29] EPSTEIN J A, FEIST E M, ZMORA J, et al. Extraction of lithium from the dead sea[J]. Hydrometallurgy,1981,6(3/4):269-275.
    [30] 葛涛, 徐亮, 孟金伟, 等.盐湖卤水提锂工艺技术研究进展[J]. 有色金属工程,2021,11(2):55-62.

    GE T, XU L, MENG J W, et al. Research progress of lithium extraction technology from salt lake brine[J]. Nonferrous Metals Engineering,2021,11(2):55-62.
    [31] 崔小琴, 程芳琴, 张爱华, 等.盐湖卤水镁锂沉淀分离工艺研究[J]. 无机盐工业,2012,44(7):33-35. doi: 10.3969/j.issn.1006-4990.2012.07.011

    CUI X Q, CHENG F Q, ZHANG A H, et al. Study on precipitation separating technique for magnesium and lithium from salt lake brine[J]. Inorganic Chemicals Industry,2012,44(7):33-35. doi: 10.3969/j.issn.1006-4990.2012.07.011
    [32] ZHANG Y, HU Y H, WANG L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering,2019,139:105868. doi: 10.1016/j.mineng.2019.105868
    [33] 张梦龙, 田欢, 魏昊, 等.锂资源提取工艺现状及发展趋势[J]. 稀有金属与硬质合金,2018,46(4):11-19.

    ZHANG M L, TIAN H, WEI H, et al. Present situation and development trend of lithium resource extraction process[J]. Rare Metals and Cemented Carbides,2018,46(4):11-19.
    [34] 吴俊文.氢氧化铝沉淀法提锂的工艺研究[J]. 魅力中国,2013(17):243-244.

    WU J W. Study on the process of extracting lithium by aluminum hydroxide precipitation[J]. Charming China,2013(17):243-244.
    [35] 刘东帆, 孙淑英, 于建国.盐湖卤水提锂技术研究与发展[J]. 化工学报,2018,69(1):141-155.

    LIU D F, SUN S Y, YU J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal,2018,69(1):141-155.
    [36] 谢朝新, 孙一博, 刘杰.纳滤膜的改性研究进展[J]. 当代化工,2020,49(5):993-996. doi: 10.3969/j.issn.1671-0460.2020.05.057

    XIE C X, SUN Y B, LIU J. Research progress of nanofiltration membrane modification[J]. Contemporary Chemical Industry,2020,49(5):993-996. doi: 10.3969/j.issn.1671-0460.2020.05.057
    [37] 王小留, 刘稳廷, 王晓明, 等.黄淮地区纳滤膜苦咸水软化分离性能研究[J]. 环境工程技术学报,2019,9(3):269-274. doi: 10.12153/j.issn.1674-991X.2019.01.090

    WANG X L, LIU W T, WANG X M, et al. Nanofiltration membrane performance during softening process of simulated brackish groundwater in the Huang-Huai region[J]. Journal of Environmental Engineering Technology,2019,9(3):269-274. doi: 10.12153/j.issn.1674-991X.2019.01.090
    [38] LU D, YAO Z K, JIAO L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes,2022,2:100032. doi: 10.1016/j.advmem.2022.100032
    [39] LI X H, ZHANG C J, ZHANG S N, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination,2015,369:26-36. doi: 10.1016/j.desal.2015.04.027
    [40] LI W, SHI C, ZHOU A Y, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology,2017,186:233-242. doi: 10.1016/j.seppur.2017.05.044
    [41] 邢红, 王肖虎, 毛新宇.膜法盐湖卤水提锂工艺研究[J]. 盐业与化工,2016,45(1):24-26. doi: 10.16570/j.cnki.issn1673-6850.2016.01.006

    XING H, WANG X H, MAO X Y. Lithium technology research of salt lake brine by membrane[J]. Journal of Salt and Chemical Industry,2016,45(1):24-26. doi: 10.16570/j.cnki.issn1673-6850.2016.01.006
    [42] 陈亦力, 李天玉, 唐娜, 等. 应用于盐湖水碳酸根分离与回收的装置: CN114477375A[P]. 2022-05-13.
    [43] 陈亦力, 莫恒亮, 刘涛, 等. 一种锂吸附剂、膜元件、其制备方法及锂提取方法与装置: CN114272914A[P]. 2022-04-05.
    [44] ZHANG T, ZHENG W J, WANG Q Y, et al. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: a comprehensive review[J]. Desalination,2023,546:116205. doi: 10.1016/j.desal.2022.116205
    [45] WEN X M, MA P H, ZHU C L, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology,2006,49(3):230-236. doi: 10.1016/j.seppur.2005.10.004
    [46] AN J W, KANG D J, TRAN K T, et al. Recovery of lithium from Uyuni Salar Brine[J]. Hydrometallurgy,2012,117/118:64-70. doi: 10.1016/j.hydromet.2012.02.008
    [47] 马培华, 邓小川, 温现民. 从盐湖卤水中分离镁和浓缩锂的方法: CN1626443A[P]. 2006-10-25.
    [48] GE L, WU B, LI Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science,2016,498:192-200. doi: 10.1016/j.memsci.2015.10.001
    [49] NIE X Y, SUN S Y, SUN Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination,2017,403:128-135. doi: 10.1016/j.desal.2016.05.010
    [50] CHITRAKAR R, KANOH H, MIYAI Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Materials,2000,12(10):3151-3157. doi: 10.1021/cm0000191
    [51] JANG Y, CHUNG E. Influence of alkanes on lithium adsorption and desorption of a H2TiO3 ion sieve adsorbent in synthetic shale gas-produced water[J]. Industrial & Engineering Chemistry Research,2019,58(48):21897-21903.
    [52] MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells[J]. Environmental Science:Processes & Impacts,2014,16(10):2237-2248.
    [53] 邓红梅, 王耀龙, 吴宏海, 等.γ-MnO2对Tl(Ⅰ)的吸附性能[J]. 环境科学研究,2015,28(1):103-109.

    DENG H M, WANG Y L, WU H H, et al. Characteristics of Tl(Ⅰ) adsorption on γ-MnO2[J]. Research of Environmental Sciences,2015,28(1):103-109.
    [54] JANG Y, CHUNG E. Adsorption of lithium from shale gas produced water using titanium based adsorbent[J]. Industrial & Engineering Chemistry Research,2018,57(25):8381-8387.
    [55] KIM S, KIM J, KIM S, et al. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant[J]. Environmental Science:Water Research & Technology,2018,4(2):175-182.
    [56] LEE J, CHUNG E. Lithium recovery by solvent extraction from simulated shale gas produced water: impact of organic compounds[J]. Applied Geochemistry,2020,116:104571.
    [57] 赵汝真, 魏琦峰, 任秀莲.盐湖提锂的萃取分离研究现状与展望[J]. 应用化工,2021,50(6):1690-1693. doi: 10.3969/j.issn.1671-3206.2021.06.049

    ZHAO R Z, WEI Q F, REN X L. Research status and prospects of extraction and separation of lithium extracted from salt lake[J]. Applied Chemical Industry,2021,50(6):1690-1693. doi: 10.3969/j.issn.1671-3206.2021.06.049
    [58] LIU G, ZHAO Z W, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy,2019,187:81-100. doi: 10.1016/j.hydromet.2019.05.005
    [59] XU P, HONG J, QIAN X M, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science,2021,56(1):16-63. doi: 10.1007/s10853-020-05019-1
    [60] 韦笑余. 高镁锂比盐湖卤水提锂新型萃取体系的开发及应用基础研究[D]. 北京: 北京化工大学, 2021.
    [61] ZHANG L C, LI L J, SHI D, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J]. Hydrometallurgy,2018,175:35-42. doi: 10.1016/j.hydromet.2017.10.029
    [62] JANG E, JANG Y, CHUNG E. Lithium recovery from shale gas produced water using solvent extraction[J]. Applied Geochemistry,2017,78:343-350. doi: 10.1016/j.apgeochem.2017.01.016
    [63] ZANTE G, TRÉBOUET D, BOLTOEVA M. Solvent extraction of lithium from simulated shale gas produced water with a bifunctional ionic liquid[J]. Applied Geochemistry,2020,123:104783. doi: 10.1016/j.apgeochem.2020.104783
    [64] CHUNG K S, LEE J C, KIM W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. Journal of Membrane Science,2008,325(2):503-508. doi: 10.1016/j.memsci.2008.09.041
    [65] MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy,2014,150:192-208. doi: 10.1016/j.hydromet.2014.10.012
    [66] 张哲浩, 李洁, 詹鹏超. 盐湖提“锂”: 记西安建筑科技大学王磊创新团队[N]. 光明日报, 2022-06-11(4).
    [67] 熊福军, 张许, 王肖虎, 等. 一种碳酸型卤水制备碳酸锂的装置: CN216427370U[P]. 2022-05-03.
    [68] 张许, 裘慕贤, 郭中伟, 等. 碳酸型盐湖吸附法提锂工艺及装置: CN114836621A[P]. 2022-08-02.
    [69] FAKHRU'L-RAZI A, PENDASHTEH A, ABDULLAH L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials,2009,170(2/3):530-551.
    [70] 陈家庆, 刘涛, 王春升, 等.海上油气田采出水处理技术的现状与展望[J]. 石油机械,2021,49(7):66-76. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.010

    CHEN J Q, LIU T, WANG C S, et al. Development status and prospect of produced water treatment technology for offshore oil & gas field[J]. China Petroleum Machinery,2021,49(7):66-76. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.010
    [71] 西南油气田提锂试验获突破[EB/OL]. [2023-02-20]. http://www.ccin.com.cn/detail/0a0619d7482229c859a876cf193026e7/news.
    [72] 李丽, 李宇, 金艳, 等.高硫高硬气田采出水提锂过程关键技术及应用[J]. 无机盐工业,2023,55(1):74-80. doi: 10.19964/j.issn.1006-4990.2022-0608

    LI L, LI Y, JIN Y, et al. Key technology and application of lithium extraction from produced water in high sulfur and high hardness gas fields[J]. Inorganic Chemicals Industry,2023,55(1):74-80. ◇ doi: 10.19964/j.issn.1006-4990.2022-0608
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  748
  • HTML全文浏览量:  369
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 网络出版日期:  2023-07-19

目录

    /

    返回文章
    返回