Factors influencing risk of droplet transmission in pavilion nucleic acid sampling environment
-
摘要:
为探究核酸采样环境中飞沫的传播风险,采用RNG k-ε(增强壁面模型)、DPM(分散相模型)和DRW(随机游走)模型,应用田口实验法对亭式核酸采样环境中飞沫传播过程及其影响因素进行研究,分析了飞沫喷射速度、气流组织形式及新风速度等因素对飞沫传播特性的影响。研究发现:气流组织形式是影响飞沫传播的主要因素,采用上进下出形式并将最大风速控制在1 m/s左右时能在保证人体热舒适感前提下有效降低飞沫传播风险;随着时间的延长飞沫浓度呈减小趋势,新风速度越大高浓度飞沫持续时间越短,20 s时呼吸区域飞沫浓度仅为极限飞沫浓度的7.7%,在保证效率的前提下应尽快完成采样并适当延长采样时间间隔至20 s以上,以降低传播风险。
Abstract:In order to explore the risk of droplet transmission in the nucleic acid sampling environment, the RNG k-ε, DPM and DRW models were adopted to study the droplet transmission process and influencing factors in the nucleic acid sampling pavilion on the basis of Taguchi experiment. The effects of initial droplet speed, airflow organization and fresh vent velocity on the characteristics of droplet transmission were analyzed. It was found that the airflow organization was the principal factor of the droplet transmission, and the up-in and down-out ventilation mode with the maximum ventilating speed of 1 m/s could effectively reduce the risk of droplet transmission under the premise of thermal comfort of the body. The droplet concentration tended to decrease as times went on, the higher the fresh vent speed, the shorter the duration of high-concentration of droplets, and the concentration of droplets dropped to below 7.7% of the limit droplet concentration in the respiratory area after 20 s. With the consideration of efficiency, sampling should be completed as soon as possible and the sampling interval should be extended to more than 20 s to reduce the risk of transmission.
-
Key words:
- droplet concentration /
- airflow organization /
- infection risk /
- Taguchi experiment /
- simulation
-
图 6 不同气流组织形式下飞沫随时间变化分布
注:同图4。
Figure 6. Droplet organization with time under different airflow patterns
表 1 飞沫参数
Table 1. Droplet parameter
密度/(kg/m3) 1×103 喷射总流/(kg/s) 7.85×10−12 半径/m 1×10−5 喷射时间/s 3 表 2 气流组织
Table 2. Air organization
工况 送风方式 送风口位置 回风口位置 A 顶进下出 房顶中央 左右墙下侧 B 同侧上进下出 左墙上侧 左墙下侧 C 异侧上进下出 左墙上侧 右墙下侧 D 同侧下进上出 左墙下侧 左墙上侧 E 异侧下进上出 左墙下侧 右墙上侧 表 3 因素水平表
Table 3. Factor level table
水平 因素 飞沫喷射速度/(m/s) 新风速度/(m/s) 气流组织形式 1 1.2 0.2 A 2 1.5 0.4 B 3 3.0 0.6 C 4 4.0 0.8 D 5 5.0 1.0 E 表 4 田口实验方案及仿真模拟结果
Table 4. Taguchi Orthogonal experiment scheme and numerical simulation results
工况 飞沫喷射速
度/(m/s)新风速
度/(m/s)气流组织
形式飞沫平均
浓度/(μg/m3)1 1.2 0.2 A 0.011 1 2 1.2 0.4 B 0.015 2 3 1.2 0.6 C 0.012 1 4 1.2 0.8 D 0.008 8 5 1.2 1.0 E 0.005 7 6 1.5 0.2 B 0.012 2 7 1.5 0.4 C 0.013 2 8 1.5 0.6 D 0.016 4 9 1.5 0.8 E 0.010 9 10 1.5 1.0 A 0.001 9 11 3.0 0.2 C 0.013 4 12 3.0 0.4 D 0.012 6 13 3.0 0.6 E 0.013 5 14 3.0 0.8 A 0.007 9 15 3.0 1.0 B 0.009 3 16 4.0 0.2 D 0.012 8 17 4.0 0.4 E 0.015 2 18 4.0 0.6 A 0.005 0 19 4.0 0.8 B 0.014 2 20 4.0 1.0 C 0.008 3 21 5.0 0.2 E 0.010 6 22 5.0 0.4 A 0.003 9 23 5.0 0.6 B 0.012 5 24 5.0 0.8 C 0.011 4 25 5.0 1.0 D 0.011 1 表 5 平均信噪比
Table 5. Average signal-to-noise ratio
水平值 平均信噪比 飞沫喷射速度 新风速度 气流组织形式 1 219.98 218.45 226.00 2 221.07 219.32 218.05 3 219.10 219.10 218.78 4 219.77 219.64 218.36 5 220.75 224.16 219.47 信噪比极差值 1.97 5.71 7.95 -
[1] 钱华, 章重洋, 郑晓红.呼吸道传染病气溶胶传染致病机理及预测方法[J]. 科学通报,2018,63(10):931-939. doi: 10.1360/N972017-01070QIAN H, ZHANG Y Z, ZHENG X H. The function of aerosols in transmitting and infecting of respiratory infectious diseases and its risk prediction[J]. Chinese Science Bulletin,2018,63(10):931-939. doi: 10.1360/N972017-01070 [2] CHAO C Y H, WAN M P, MORAWSKA L, et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening[J]. Journal of Aerosol Science,2009,40(2):122-133. doi: 10.1016/j.jaerosci.2008.10.003 [3] XU C W, NIELSEN P V, LIU L, et al. Human exhalation characterization with the aid of schlieren imaging technique[J]. Building and Environment,2017,112:190-199. doi: 10.1016/j.buildenv.2016.11.032 [4] HASLBECK K, SCHWARZ K, HOHLFELD J M, et al. Submicron droplet formation in the human lung[J]. Journal of Aerosol Science,2010,41(5):429-438. doi: 10.1016/j.jaerosci.2010.02.010 [5] 李中浤, 张列宇, 许秋瑾, 等.基于文献计量学的环境领域病毒研究现状分析[J]. 环境工程技术学报,2021,11(6):1232-1240. doi: 10.12153/j.issn.1674-991X.20210016LI Z H, ZHANG L Y, XU Q J, et al. Analysis of virus research status in the environmental filed based on bibliometrics[J]. Journal of Environmental Engineering Technology,2021,11(6):1232-1240. doi: 10.12153/j.issn.1674-991X.20210016 [6] YANG X, OU C Y, YANG H Y, et al. Transmission of pathogen-laden expiratory droplets in a coach bus[J]. Journal of Hazardous Materials,2020,397:122609. doi: 10.1016/j.jhazmat.2020.122609 [7] KING M F, NOAKES C J, SLEIGH P A, et al. Bioaerosol deposition in single and two-bed hospital rooms: a numerical and experimental study[J]. Building and Environment,2013,59:436-447. doi: 10.1016/j.buildenv.2012.09.011 [8] 吴家麟, 翁文国, 付明.人员移动对患者呼出病毒颗粒传播影响的数值研究[J]. 清华大学学报:自然科学版,2022,62(6):1044-1051.WU J L, WENG W G, FU M. Effect of human movement on a patient's exhaled viral particle transmission: a numerical study[J]. Journal of Tsinghua University:Science and Technology,2022,62(6):1044-1051. [9] 曹素珍, 温东森, 陈星, 等.新冠肺炎疫情期间我国居民佩戴口罩防护行为研究[J]. 环境科学研究,2020,33(7):1649-1658.CAO S Z, WEN D S, CHEN X, et al. Protective behavior of Chinese population wearing masks during the COVID-19 Epidemic[J]. Research of Environmental Sciences,2020,33(7):1649-1658. [10] 姜楠, 李赛, 曹素珍, 等.新冠肺炎疫情期间我国人群交通出行行为分析[J]. 环境科学研究,2020,33(7):1675-1682.JIANG N, LI S, CAO S Z, et al. Transportation activity patterns of Chinese population during the COVID-19 epidemic[J]. Research of Environmental Sciences,2020,33(7):1675-1682. [11] 刘艳杰, 刘小雪, 马庚雪.新冠疫情防控期京津冀重污染气象成因分析[J]. 环境工程技术学报,2021,11(6):1065-1074.LIU Y J, LIU X X, MA G X. Analysis on meteorological causes of heavy pollution in Beijing-Tianjin-Hebei Region during the prevention and control of COVID-19[J]. Journal of Environmental Engineering Technology,2021,11(6):1065-1074. [12] 国家预警信息发布中心.新型冠状病毒肺炎疫情实时大数据报告[R/OL]. [2022-09-18]. https://voice.baidu.com/act/ newpneumonia/newpneumonia. [13] 国家卫健委.新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022, 17(4): 481-487. [14] 雷浩, 肖胜蓝, 张楠, 等.新型冠状病毒在家庭环境中的主要传播途径[J]. 科技导报,2021,39(9):78-86.LEI H, XIAO S L, ZHANG N, et al. Exploring dominant transmission routes of COVID-19 in households[J]. Science & Technology Review,2021,39(9):78-86. [15] 王飞, 高文峰, 李琼, 等.核酸采样室携带病毒颗粒物扩散的模拟与通风方案优化[J]. 计算机辅助工程,2022,31(1):69-73.WANG F, GAO W F, LI Q, et al. Virus-carrying particles diffusion simulation and ventilation scheme optimization in nucleic acid sampling room[J]. Computer Aided Engineering,2022,31(1):69-73. [16] 罗婷, 胡卓焕, 杨茉.有限空间内飞沫颗粒传播规律的数值研究[J]. 流体机械,2021,49(7):83-90. doi: 10.3969/j.issn.1005-0329.2021.07.013LUO T, HU Z H, YANG M. Numerical study on the spread and diffusion law of droplet particles in limited space[J]. Fluid Machinery,2021,49(7):83-90. doi: 10.3969/j.issn.1005-0329.2021.07.013 [17] CHENG Y H, WANG C H, YOU S H, et al. Assessing coughing-induced influenza droplet transmission and implications for infection risk control[J]. Epidemiology and Infection,2016,144(2):333-345. doi: 10.1017/S0950268815001739 [18] 刘荔, 张毅, 付林志, 等.热分层环境人际间飞沫传染风险与对策研究[J]. 暖通空调,2020,50(6):19-25.LIU L, ZHANG Y, FU L Z, et al. Interpersonal droplet transmission risk and countermeasures in thermally stratified environment[J]. Heating Ventilating & Air Conditioning,2020,50(6):19-25. [19] 冯国会, 明月, 兰信颖, 等.室内3种送风方式下人体气溶胶颗粒数值模拟[J]. 沈阳建筑大学学报(自然科学版),2014,30(1):131-136.FENG G H, MING Y, LAN X Y, et al. The numerical simulation of human aerosol particles under three air supply methods in room[J]. Journal of Shenyang Jianzhu University (Natural Science),2014,30(1):131-136. [20] 肖春华.面对面呼吸飞沫传播和防护的流体力学初步分析[J]. 空气动力学学报,2021,39(2):133-141.XIAO C H. Preliminary fluid dynamics analysis on face-to-face respiratory droplets transmission and protection[J]. Acta Aerodynamica Sinica,2021,39(2):133-141. [21] KWON S B, PARK J, JANG J, et al. Study on the initial velocity distribution of exhaled air from coughing and speaking[J]. Chemosphere,2012,87(11):1260-1264. doi: 10.1016/j.chemosphere.2012.01.032 [22] 代慧, 赵彬.人呼出飞沫和飞沫核的运动传播规律[J]. 科学通报,2021,66(增刊 1):493-500.DAI H, ZHAO B. Movement and transmission of human exhaled droplets/droplet nuclei[J]. Chinese Science Bulletin,2021,66(Suppl 1):493-500. [23] 张毅. 置换通风温度分层对人际间飞沫传播的影响机理研究[D]. 西安: 西安建筑科技大学, 2019. [24] 魏世振, 韩玉启, 陈传明.基于信噪比的多元质量损失函数研究[J]. 管理工程学报,2004,18(2):4-7. ⊕