留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析

赵芹 程东会 王燕 赵昕宇 党秋玲

赵芹,程东会,王燕,等.不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J].环境工程技术学报,2023,13(4):1514-1524 doi: 10.12153/j.issn.1674-991X.20221230
引用本文: 赵芹,程东会,王燕,等.不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J].环境工程技术学报,2023,13(4):1514-1524 doi: 10.12153/j.issn.1674-991X.20221230
ZHAO Q,CHENG D H,WANG Y,et al.Analysis of the time series difference of the material structure evolution of DOM and humic acid during composting of different materials[J].Journal of Environmental Engineering Technology,2023,13(4):1514-1524 doi: 10.12153/j.issn.1674-991X.20221230
Citation: ZHAO Q,CHENG D H,WANG Y,et al.Analysis of the time series difference of the material structure evolution of DOM and humic acid during composting of different materials[J].Journal of Environmental Engineering Technology,2023,13(4):1514-1524 doi: 10.12153/j.issn.1674-991X.20221230

不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析

doi: 10.12153/j.issn.1674-991X.20221230
基金项目: 国家自然科学基金项目(52000165);国家重点研发计划项目(2019YFC190060)
详细信息
    作者简介:

    赵芹(1996—),女,硕士研究生,主要研究方向为固体废物处理与资源化,1623530977@qq.com

    通讯作者:

    党秋玲(1982—),女,高级工程师,博士,主要从事固体废物资源化研究,dangling819@126.com

  • 中图分类号: X705

Analysis of the time series difference of the material structure evolution of DOM and humic acid during composting of different materials

  • 摘要:

    以提取鸡粪未添加菌剂(CM)、鸡粪添加菌剂(CMB)及餐厨垃圾(FW)堆肥过程中提取的溶解性有机质(DOM)和腐殖酸(HA)为研究对象,利用荧光光谱平行因子分析及二维相关光谱分析对DOM和HA的物质结构及转化时序进行表征。结果表明:DOM的腐殖化指数(HIX)表现为CMB>CM>FW,FW堆肥有机质的自生源特性更强,CMB堆肥有机质腐殖化程度最高。与堆肥时间相比,DOM和HA的光谱结构特性对堆肥种类的响应更强烈;3种堆肥的DOM中,类蛋白组分相对浓度整体表现为CM>FW>CMB,类腐殖质组分表现为CMB>FW>CM;HA中,类蛋白组分相对浓度为CM>CMB(FW),类腐殖质组分表现为CMB(FW)>CM。二维相关光谱表明:鸡粪堆肥中,DOM各组分演化时序为类胡敏酸>类酪氨酸>类色氨酸>类富里酸,HA各组分表现为类酪氨酸>类富里酸>类色氨酸;餐厨垃圾堆肥中,DOM各组分演化时序为类色氨酸>类酪氨酸>类富里酸,HA各组分表现为类胡敏酸>类酪氨酸>类色氨酸>类富里酸。适当的含水率有利于DOM中类腐殖质物质的生成,氨氮(NH4 +-N)浓度的降低与鸡粪堆肥DOM中类蛋白物质的降解以及腐殖化程度的增强有关,硝氮(NO3 -N)浓度与类腐殖质组分呈显著正相关;水溶性有机碳(DOC)浓度和含水率的降低可能标志着堆肥过程中HA的腐殖化程度增强。

     

  • 图  1  3种堆肥DOM和HA中DOC浓度变化

    Figure  1.  DOC concentration changes of DOM and HA in three composts

    图  2  不同物料堆肥中DOM和HA的三维荧光组分

    Figure  2.  Three-dimensional fluorescence components of DOM and HA in compost of different materials

    图  3  不同物料堆肥DOM、HA荧光组分占比变化

    Figure  3.  Changes in the proportion of fluorescence components of DOM and HA in composts with different materials

    图  4  不同物料堆肥DOM、HA的二维相关光谱

    注:红色代表正相关,蓝色代表负相关,颜色越深则相关性越强。

    Figure  4.  Two-dimensional correlation spectra of DOM and HA in composts of different materials

    图  5  堆肥DOM、HA荧光特征与理化性质的相关性分析

    Figure  5.  Correlation analysis between fluorescence characteristics and physicochemical properties of DOM and HA of compost

    表  1  堆肥物料基本理化指标

    Table  1.   Basic physiochemical indexes of compost materials

    样品pH含水率/%C/NEC/(mS/cm)有机质浓度/%DOC浓度/(g/kg)
    鸡粪7.84±0.2172.12±2.028.68±1.335.05±0.3352.55±1.893.98±0.12
    餐厨垃圾5.32±0.1687.67±3.8514.84±1.496.21±0.4564.43±2.214.66±0.17
    稻壳6.75±0.118.71±0.1673.67±2.392.17±0.1785.69±3.451.93±1.24
    下载: 导出CSV

    表  2  堆肥样品理化特性

    Table  2.   Physiochemical properties of compost samples

    样品温度/℃pH含水率/%NH4 +-N浓度/(g/kg)NO3 -N浓度/(g/kg)
    CM130.66±1.45a7.15±0.03a59.56±1.63a4.54±0.01a1.43±0.16a
    CM1042.57±2.24b7.59±0.42a60.06±2.32a5.10±0.12a1.28±0.23a
    CM2069.35±2.17c8.05±0.02a53.59±4.16b3.73±0.19a1.64±0.19a
    CM4068.82±3.69c7.86±0.35a48.42±1.08c2.41±0.15b2.07±0.09a
    CM6035.69±2.11a7.28±0.68a43.28±2.06c2.25±0.12b2.35±0.31a
    CMB129.78±0.79a7.20±0.39a61.75±2.11a4.51±0.01a1.75±0.07a
    CMB1045.12±1.87b7.79±0.07a57.64±3.02b6.59±0.21d1.93±0.19a
    CMB2072.01±3.33c8.39±0.06a55.29±4.22b4.68±0.15a2.01±0.11a
    CMB4069.22±4.75c7.95±0.23a50.30±2.98c2.08±0.04c2.29±0.14a
    CMB6033.56±3.34a7.45±0.09a40.58±1.69c1.76±0.01c2.52±0.07b
    FW131.23±2.22a6.74±0.02a66.53±2.56a2.61±0.05b1.26±0.22a
    FW1040.16±3.21b7.05±0.52a68.65±3.18a3.02±0.27b1.97±0.16a
    FW2066.71±3.56c7.83±0.19a59.38±2.07b2.69±0.02b2.39±0.21a
    FW4065.33±4.72c7.69±0.01a46.22±4.18c3.48±0.09b2.52±0.07a
    FW6032.61±1.89a7.60±0.04a42.42±1.42c2.38±0.07a2.81±0.05a
      注:数据为平均值±标准偏差;采用ANOVA分析各组间统计学差异,不同小写字母表示同种物料堆肥不同堆肥阶段之间理化特性存在显著差异(P<0.05,n=3);样品编号CM、CMB、FW后的数字1、10、20、40、60分别表示取样时间为堆肥第1、10、20、40、60天。全文同。
    下载: 导出CSV

    表  3  堆肥DOM、HA的荧光光谱参数

    Table  3.   Fluorescence spectrum parameters of compost DOM and HA

    样品DOMHA
    FIBIXHIXFIBIXHIX
    CM11.932±0.014b0.926±0.029b0.220±0.002a1.878±0.005a0.853±0.004a0.428±0.011a
    CM101.868±0.004a0.906±0.005b0.241±0.001a1.841±0.002a0.879±0.001a0.478±0.002a
    CM201.884±0.006a0.863±0.011a0.260±0.002a1.798±0.008a0.812±0.001a0.528±0.011b
    CM401.881±0.019a0.841±0.001a0.267±0.005a1.817±0.009a0.799±0.025a0.535±0.008b
    CM601.872±0.028a0.864±0.008a0.313±0.004a1.808±0.014a0.768±0.002b0.563±0.009c
    CMB11.886±0.085a0.819±0.021a0.234±0.008a1.728±0.002a0.800±0.001a0.556±0.006b
    CMB101.857±0.028a0.812±0.002a0.293±0.007a1.691±0.006b0.745±0.005ab0.532±0.018b
    CMB201.861±0.019a0.729±0.012c0.406±0.012b1.688±0.006b0.654±0.002b0.575±0.007b
    CMB401.845±0.035a0.778±0.003a0.419±0.008b1.672±0.005b0.706±0.008a0.625±0.018c
    CMB601.857±0.071a0.843±0.004a0.414±0.005b1.649±0.004b0.729±0.002a0.663±0.024c
    FW11.974±0.004b0.963±0.003b0.185±0.003a1.883±0.016a0.900±0.013a0.523±0.007a
    FW101.942±0.006b0.928±0.004b0.189±0.001a1.868±0.009a0.880±0.006a0.569±0.002a
    FW201.954±0.006b0.799±0.002a0.209±0.007a1.840±0.007a0.829±0.002a0.510±0.016a
    FW401.930±0.005b0.866±0.008a0.252±0.003a1.829±0.006a0.822±0.005a0.549±0.008b
    FW601.884±0.018a0.887±0.059a0.304±0.012a1.822±0.011a0.809±0.009a0.668±0.002b
    下载: 导出CSV
  • [1] REN J Q, YU P X, XU X H. Straw utilization in China: status and recommendations[J]. Sustainability,2019,11(6):1762. doi: 10.3390/su11061762
    [2] 夏湘勤, 席北斗, 黄彩红, 等.畜禽粪便堆肥臭气控制研究进展[J]. 环境工程技术学报,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142

    XIA X Q, XI B D, HUANG C H, et al. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology,2019,9(6):649-657. doi: 10.12153/j.issn.1674-991X.2019.05.142
    [3] HAFID H S, RAHMAN N A A, SHAH U K M, et al. Feasibility of using kitchen waste as future substrate for bioethanol production: a review[J]. Renewable and Sustainable Energy Reviews,2017,74:671-686. doi: 10.1016/j.rser.2017.02.071
    [4] 丁杰, 郝艳, 侯佳奇, 等.接种抗酸化复合菌对餐厨废弃物堆肥酸化缓解及腐殖化的影响[J]. 环境科学研究,2016,29(12):1887-1894.

    DING J, HAO Y, HOU J Q, et al. Effects of anti-acidification microbial agents (AAMA) on reducing acidification and promoting humification during kitchen waste composting[J]. Research of Environmental Sciences,2016,29(12):1887-1894.
    [5] MANGALGIRI K P, TIMKO S A, GONSIOR M, et al. PARAFAC modeling of irradiation- and oxidation-induced changes in fluorescent dissolved organic matter extracted from poultry litter[J]. Environmental Science & Technology,2017,51(14):8036-8047.
    [6] ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review[J]. Environmental Science & Technology,2012,46(4):2006-2017.
    [7] 秦纪洪, 王姝, 刘琛, 等.海拔梯度上川西高山土壤溶解性有机质(DOM)光谱特征[J]. 中国环境科学,2019,39(10):4321-4328. doi: 10.3969/j.issn.1000-6923.2019.10.035

    QIN J H, WANG S, LIU C, et al. Spectroscopic characteristics of soil dissolved organic matter (DOM) along the altitudinal gradient of alpine in western Sichuan[J]. China Environmental Science,2019,39(10):4321-4328. doi: 10.3969/j.issn.1000-6923.2019.10.035
    [8] 何伟, 白泽琳, 李一龙, 等.溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报,2016,36(2):359-372.

    HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae,2016,36(2):359-372.
    [9] 汪景宽, 徐英德, 丁凡, 等.植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报,2019,56(3):528-540. doi: 10.11766/trxb201811140559

    WANG J K, XU Y D, DING F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review[J]. Acta Pedologica Sinica,2019,56(3):528-540. doi: 10.11766/trxb201811140559
    [10] HE X S, XI B D, ZHANG Z Y, et al. Insight into the evolution, redox, and metal binding properties of dissolved organic matter from municipal solid wastes using two-dimensional correlation spectroscopy[J]. Chemosphere,2014,117:701-707. doi: 10.1016/j.chemosphere.2014.09.060
    [11] BRATSKAYA S, GOLIKOV A, LUTSENKO T, et al. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model[J]. Chemosphere,2008,73(4):557-563. doi: 10.1016/j.chemosphere.2008.06.014
    [12] 魏自民, 吴俊秋, 赵越, 等.堆肥过程中氨基酸的产生及其对腐植酸形成的影响[J]. 环境工程技术学报,2016,6(4):377-383. doi: 10.3969/j.issn.1674-991X.2016.04.056

    WEI Z M, WU J Q, ZHAO Y, et al. Production of amino acids and its effect on the formation of humic acids during composting[J]. Journal of Environmental Engineering Technology,2016,6(4):377-383. doi: 10.3969/j.issn.1674-991X.2016.04.056
    [13] WANG C, TU Q P, DONG D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials,2014,280:409-416. doi: 10.1016/j.jhazmat.2014.08.030
    [14] WANG K, LI W G, GONG X J, et al. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV-vis, GPC, FTIR and EEM[J]. International Biodeterioration & Biodegradation,2013,85:617-623.
    [15] McADAMS B C, AIKEN G R, McKNIGHT D M, et al. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: accounting for changes in stationary phases, analytical standards, and isolation methods[J]. Environmental Science & Technology,2018,52(2):722-730.
    [16] 敖静, 王涛, 常瑞英.三维荧光光谱法在土壤溶解性有机质组分解析中的应用[J]. 土壤通报,2022,53(3):738-746.

    AO J, WANG T, CHANG R Y. Application of the three-dimensional excitation-emission matrix fluorescence spectroscopy in the analysis of soil dissolved organic matter components[J]. Chinese Journal of Soil Science,2022,53(3):738-746.
    [17] GAO J K, LIANG C L, SHEN G Z, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere,2017,176:108-116. doi: 10.1016/j.chemosphere.2017.02.104
    [18] WU J, QI H, HUANG X, et al. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw[J]. Bioresource technology, 2018, 269: 169-178.
    [19] QIN X Q, YAO B, JIN L, et al. Characterizing soil dissolved organic matter in typical soils from China using fluorescence EEM-PARAFAC and UV-visible absorption[J]. Aquatic Geochemistry,2020,26(1):71-88. doi: 10.1007/s10498-019-09366-7
    [20] RODRÍGUEZ F J, SCHLENGER P, GARCÍA-VALVERDE M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and 1H NMR techniques[J]. Science of the Total Environment,2016,541:623-637. doi: 10.1016/j.scitotenv.2015.09.127
    [21] LI S Y, LI M, WANG G X, et al. Compositional and chemical characteristics of dissolved organic matter in various types of cropped and natural Chinese soils[J]. Chemical and Biological Technologies in Agriculture,2019,6(1):1-11. doi: 10.1186/s40538-018-0131-2
    [22] 李洋, 席北斗, 赵越, 等.不同物料堆肥腐熟度评价指标的变化特性[J]. 环境科学研究,2014,27(6):623-627.

    LI Y, XI B D, ZHAO Y, et al. Study of maturity parameter characteristics in composting process using different materials[J]. Research of Environmental Sciences,2014,27(6):623-627.
    [23] 聂二旗, 郑国砥, 高定, 等.适量通风显著降低鸡粪好氧堆肥过程中氮素损失[J]. 植物营养与肥料学报,2019,25(10):1773-1780.

    NIE E Q, ZHENG G D, GAO D, et al. Moderate intensity of ventilation can significantly reduce nitrogen loss during aerobic composting of chicken manure[J]. Journal of Plant Nutrition and Fertilizers,2019,25(10):1773-1780.
    [24] 王丝可, 于恒, 左剑恶.温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响[J]. 环境科学,2020,41(11):5082-5088.

    WANG S K, YU H, ZUO J E. Effects of temperature and substrate concentration on N2O release of ANAMMOX process[J]. Environmental Science,2020,41(11):5082-5088.
    [25] 张陆, 王宏戈, 王惟帅, 等. 新型酸化方式对农业废弃物堆肥氮转化的影响[J]. 中国生态农业学报(中英文), 2023,31(5): 796-806.

    ZHANG L, WANG H G, WANG W S, et al. Effects of new acidification methods on nitrogen conversion during agricultural waste composting[J]. Chinese Journal of Eco-Agriculture, 2023,31(5): 796-806.
    [26] 黄春艳, 田光亮, 汪国英, 等.3种典型有机废弃物厌氧消化中NH3和CS2的释放特征[J]. 中国沼气,2022,40(2):18-26.

    HUANG C Y, TIAN G L, WANG G Y, et al. Release characteristics of NH3 and CS2 during anaerobic digestion of three typical organic wastes[J]. China Biogas,2022,40(2):18-26.
    [27] WANG K, LI X K, HE C, et al. Transformation of dissolved organic matters in swine, cow and chicken manures during composting[J]. Bioresource Technology,2014,168:222-228. doi: 10.1016/j.biortech.2014.03.129
    [28] 李忠佩, 焦坤, 吴大付.不同提取条件下红壤水稻土溶解有机碳的含量变化[J]. 土壤,2005,37(5):512-516.

    LI Z P, JIAO K, WU D F. Soluble organic C content of paddy soils in subtropical China in relation to extraction conditions[J]. Soils,2005,37(5):512-516.
    [29] 张晓亮, 王洪波, 杨芳, 等.山东省平度市农村黑臭水体DOM三维荧光光谱的平行因子分析[J]. 环境工程技术学报,2022,12(3):651-659.

    ZHANG X L, WANG H B, YANG F, et al. Parallel factor analysis with three-dimensional excitation-emission matrix spectroscopy on dissolved organic matter of rural black and odorous water bodies in Pingdu City of Shandong Province[J]. Journal of Environmental Engineering Technology,2022,12(3):651-659.
    [30] WICKLAND K P, NEFF J C, AIKEN G R. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability[J]. Ecosystems,2007,10(8):1323-1340. doi: 10.1007/s10021-007-9101-4
    [31] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience,2009,2(1):37-41. doi: 10.1038/ngeo391
    [32] JIAO N Z, HERNDL G J, HANSELL D A, et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool[J]. Nature Reviews Microbiology,2011,9(7):555.
    [33] GAO X T, TAN W B, ZHAO Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environmental Science & Technology,2019,53(7):3653-3662.
    [34] 袁英, 何小松, 席北斗, 等.腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学,2014,33(12):2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019

    YUAN Y, HE X S, XI B D, et al. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry,2014,33(12):2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
    [35] 周可, 谢凤行, 李亚玲, 等.不同微生物菌剂处理对鸡粪堆肥发酵的影响[J]. 天津农业科学,2009,15(3):10-13. doi: 10.3969/j.issn.1006-6500.2009.03.004

    ZHOU K, XIE F X, LI Y L, et al. Effects of inoculating different microorganism agents on composting of chicken manure[J]. Tianjin Agricultural Sciences,2009,15(3):10-13. doi: 10.3969/j.issn.1006-6500.2009.03.004
    [36] ZHU L J, ZHAO Y, BAI S C, et al. New insights into the variation of dissolved organic matter components in different latitudinal lakes of northeast China[J]. Limnology and Oceanography,2020,65(3):471-481. doi: 10.1002/lno.11316
    [37] 李帅东, 张明礼, 杨浩, 等.昆明松华坝库区表层土壤溶解性有机质(DOM)的光谱特性[J]. 光谱学与光谱分析,2017,37(4):1183-1188.

    LI S D, ZHANG M L, YANG H, et al. Spectroscopic characteristics of dissolved organic matter from top soils on SongHuaba Reservoir in Kunmimg[J]. Spectroscopy and Spectral Analysis,2017,37(4):1183-1188.
    [38] GU N T, SONG Q B, YANG X L, et al. Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China[J]. Environmental Pollution,2020,258:113807. doi: 10.1016/j.envpol.2019.113807
    [39] XU H C, JIANG H L. UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial bloomsina eutrophic freshwater lake[J]. Water Research,2013,47(17):6506-6515. doi: 10.1016/j.watres.2013.08.021
    [40] 赵越, 何小松, 席北斗, 等.鸡粪堆肥有机质转化的荧光定量化表征[J]. 光谱学与光谱分析,2010,30(6):1555-1560. doi: 10.3964/j.issn.1000-0593(2010)06-1555-06

    ZHAO Y, HE X S, XI B D, et al. Quantitative fluorescence characterization of organic matter stability during chicken manure composting[J]. Spectroscopy and Spectral Analysis,2010,30(6):1555-1560. doi: 10.3964/j.issn.1000-0593(2010)06-1555-06
    [41] NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. Hoboken: John Wiley & Sons, 2004.
    [42] NIE Z Y, WU X D, HUANG H M, et al. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management[J]. Environmental Science and Pollution Research,2016,23(9):8756-8769. doi: 10.1007/s11356-016-6110-x
    [43] LI W, JIA X X, LI M, et al. Insight into the vertical characteristics of dissolved organic matter in 5-m soil profiles under different land-use types on the Loess Plateau[J]. Science of the Total Environment,2019,692:613-621. doi: 10.1016/j.scitotenv.2019.07.339
    [44] HUR J, JUNG K Y, JUNG Y M. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy[J]. Water Research,2011,45(9):2965-2974. doi: 10.1016/j.watres.2011.03.013
    [45] MYNENI S C, BROWN J T, MARTINEZ G A, et al. Imaging of humic substance macromolecular structures in water and soils[J]. Science,1999,286:1335-1337. doi: 10.1126/science.286.5443.1335
    [46] PARDO G, MORAL R, AGUILERA E, et al. Gaseous emissions from management of solid waste: a systematic review[J]. Global Change Biology,2015,21(3):1313-1327. doi: 10.1111/gcb.12806
    [47] WANG J J, LIU Y N, BOWDEN R D, et al. Long-term nitrogen addition alters the composition of soil-derived dissolved organic matter[J]. ACS Earth and Space Chemistry,2020,4(2):189-201. doi: 10.1021/acsearthspacechem.9b00262
    [48] 张文浩, 赵铎霖, 王晓毓, 等.太白山自然保护区水体 CDOM吸收与三维荧光特征[J]. 环境科学,2020,41(11):4958-4969.

    ZHANG W H, ZHAO D L, WANG X Y, et al. Absorption and three dimensional fluorescence spectra of CDOM in the water of the Taibaishan Nature Reserve[J]. Environmental Science,2020,41(11):4958-4969.
    [49] BAI L, DENG Y, LI J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology,2020,307:122941. doi: 10.1016/j.biortech.2020.122941
    [50] CHOWDHURY B, LIN L, DHAR B R, et al. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials[J]. Chemosphere,2019,236:124362. □ doi: 10.1016/j.chemosphere.2019.124362
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  170
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 录用日期:  2023-04-18
  • 修回日期:  2023-01-16
  • 网络出版日期:  2023-09-20

目录

    /

    返回文章
    返回