Heavy metal enrichment characteristics and medicinal health risk assessment of dominant plants around a mining area in Henan Province
-
摘要:
筛选适宜矿业废弃地生长的药用植物并评价其重金属富集能力及药用风险,以实现在降低矿区重金属污染风险的同时提高土地利用效率。选取河南某矿区坡顶位置自然生长的9种优势药用植物,对整株植物及0~10 cm根际土进行采集,应用转运系数、生物富集系数、危害商法及人体健康风险评估模型开展分析,研究各植物对9种重金属的富集和转移特性,探讨药用植物对人体潜在的健康风险。结果表明:植物根际土壤中Cd、As有效态占比超过20%,存在中等风险;小飞蓬(Conyza canadensis)中As、Cu元素含量较高,白茅(Imperata cylindrica)、小飞蓬及狗尾草(Setaira viridis)中的Cr、Ni元素含量较高,白茅、小飞蓬及金银花(Lonicera japonica)中Pb元素含量较高;金银花还对土壤中Cd、As、Cu、Pb、Hg、Ag等元素有较强的吸附能力,艾草(Artemisia argyi)对Cr元素富集能力强,同时艾草及金银花重金属富集量对人体危害程度较低;小飞蓬、五节芒(Miscanthus floridulus)对土壤中Cd、As、Cu、Pb、Hg、Ag等重金属的吸附及转运能力较强,但其对人体健康风险较大;猪毛菜(Salsola collina)、盐肤木(Rhus chinensis)对Cd、As、Cu、Pb、Hg、Ag等重金属的吸附及转运能力较弱,对重金属具有耐受性,属于重金属低蓄积量植物。在今后研究及生态建设中,需要针对具体目的选择适宜的植物进行栽培及修复。
Abstract:Screening medicinal plants suitable for growth in abandoned mining areas and evaluating their heavy metal enrichment ability and medicinal risks can provide the scientific basis for reducing the risk of heavy metal pollution in mining areas and improving land use efficiency. Nine dominant medicinal plants naturally growing at the top of the slope of a mining area in Henan Province were selected, and the whole plants and rhizosphere soil of 0-10 cm were collected. Using transport coefficient, bioenrichment coefficient, hazard quotient method and human health risk assessment model, the enrichment and transfer characteristics of each plant to the nine heavy metals were analyzed, and the potential health risks of medicinal plants to the human body were studied. The results showed that the proportion of available Cd and As in the rhizosphere soil was more than 20%, indicating a moderate risk. The contents of As and Cu were higher in Conyza canadensis; the contents of Cr and Ni were higher in Imperata cylindrica, Conyza canadensis and Setaira viridis; the contents of Pb were higher in Imperata cylindrica, Conyza canadensis and Lonicera japonica. Artemisia argyi had a strong enrichment ability of Cr, and Lonicera japonica had a strong adsorption ability of Cd, As, Cu, Pb, Hg, Ag and other elements in the soil. At the same time, Artemisia argyi and Lonicera japonica had a low degree of harm to the human body. Conyza canadensis and Miscanthus floridulus had a strong adsorption and transport ability of Cd, As, Cu, Pb, Hg, Ag and other heavy metals in soil, but they had great risks to human health. Salsola collina and Rhus chinensis had a weak adsorption and transport ability of heavy metals such as Cd, As, Cu, Pb, Hg, Ag, and they were tolerant to heavy metals, so they belonged to plants with low accumulation of heavy metals. In the future research and ecological construction, it was necessary to select suitable plants for cultivation and restoration for specific purposes.
-
Key words:
- heavy metals /
- bioenrichment index /
- hazard index /
- medicinal plant /
- health risk
-
表 1 用于估算重金属风险的参数
Table 1. Parameters used for the estimation of risk for heavy metals
参数 参考剂量/
〔mg/(kg·d)〕重金属暴露倾斜
系数/(kg·d/mg)暴露时间/a 1 Cd 0.001 6.3 成人平均预期寿命/d 8 760 As 0.000 3 15.1 儿童平均预期寿命/d 2 190 Cu 0.04 成人体重/kg 76.71 Cr 0.005 儿童体重/kg 6.5 Ni 0.02 曝光频率/(d/a) 180 Pb 0.003 5 Hg 0.000 3 Ag 0.005 表 2 不同植物的重金属转运系数(TF)及生物富集系数(BCF)
Table 2. Heavy metal transport coefficient (TF) and biological enrichment coefficient (BCF) of different plants
系数 植物 Cd As Cu Cr Ni Pb Hg Ag TF 野茼蒿 0.54±0.36 0.95±0.23 0.61±0.31 0.76±0.79 0.73±0.76 0.78±0.50 0.64±0.25 0.46±0.17 金银花 1.23±0.07 1.62±0.05 2.77±0.38 1.60±0.15 2.04±0.74 2.28±0.23 1.02±0.02 2.84±0.46 白茅 0.97±0.17 1.03±0.20 0.08±0.00 0.97±0.19 0.90±0.25 0.47±0.06 0.99±0.10 0.86±0.13 猪毛菜 0.97±0.01 0.53±0.03 0.46±0.03 0.66±0.09 0.55±0.07 0.82±0.07 0.99±0.01 0.32±0.04 狗尾草 1.57±0.23 1.23±0.11 1.16±0.04 0.53±0.02 0.59±0.03 2.13±0.03 1.28±0.03 0.52±0.12 艾草 1.11±0.05 2.02±0.51 3.48±1.15 13.94±11.89 62.9±52.62 2.37±0.32 1.13±0.20 7.76±4.21 五节芒 1.01±0.07 1.17±0.08 1.13±0.16 4.22±0.31 2.21±0.19 1.89±0.32 1.08±0.06 1.04±0.11 盐肤木 0.96±0.02 0.77±0.05 0.70±0.03 0.15±0.00 0.05±0.01 0.60±0.03 1.04±0.06 0.76±0.08 小飞蓬 0.87±0.02 0.23±0.02 0.22±0.02 0.61±0.06 0.46±0.04 0.25±0.01 0.85±0.05 0.12±0.01 BCF 野茼蒿 1.19±0.05 0.69±0.04 1.64±0.17 18.94±1.80 20.48±1.08 0.19±0.02 1.11±0.05 1.52±1.06 金银花 1.02±0.03 0.51±0.04 0.92±0.09 7.47±0.73 8.12±0.86 0.83±1.05 0.97±0.03 0.33±0.03 白茅 1.05±0.13 0.71±0.03 14.52±2.53 22.81±5.99 47.57±11.30 0.50±0.05 1.03±0.08 0.47±0.03 猪毛菜 0.98±0.01 0.24±0.02 0.30±0.01 19.52±1.64 17.88±2.74 0.17±0.01 0.63±0.09 0.05±0.00 狗尾草 0.66±0.10 0.29±0.01 0.82±0.03 151.43±6.46 190.37±13.29 0.10±0.00 0.67±0.02 1.81±0.57 艾草 0.99±0.04 0.44±0.07 0.66±0.05 2.63±0.19 0.63±0.08 0.13±0.01 0.87±0.06 0.14±0.01 五节芒 0.99±0.07 0.14±0.01 0.30±0.03 8.80±2.01 23.5±0.88 0.11±0.02 0.76±0.03 0.77±0.07 盐肤木 0.99±0.09 0.35±0.05 0.28±0.02 11.74±1.01 13.25±1.96 0.23±0.03 0.79±0.17 0.12±0.01 小飞蓬 1.12±0.06 1.20±0.06 1.15±0.01 31.95±2.08 40.06±7.03 0.68±0.02 1.24±0.10 1.06±0.04 表 3 药用植物重金属对成人和儿童的危害指数(HI)及贡献率
Table 3. Hazard index (HI) and contribution rate of heavy metals to adults and children by medicinal plants
受体 植物 部位 致癌风险
(CR)危害指数
(HI)各元素贡献率/% Cd As Cd As Cu Cr Ni Pb Hg Ag 成人 野茼蒿 根系 2.07×10−5 3.52×10−4 0.42 0.79 18.57 0.38 40.39 5.73 0.50 4.06 29.58 地上部分 3.84×10−5 3.70×10−4 0.70 0.87 11.72 0.36 32.42 4.68 0.39 3.77 45.80 金银花 根系 4.10×10−5 6.05×10−4 0.54 1.21 24.82 0.69 26.50 4.91 1.65 4.43 35.79 地上部分 3.32×10−5 3.72×10−4 0.29 1.85 28.72 0.45 31.13 4.54 1.40 8.18 23.72 白茅 根系 3.31×10−5 4.93×10−4 0.70 0.76 15.54 0.54 43.17 11.67 0.54 3.46 24.33 地上部分 3.46×10−5 4.76×10−4 0.77 0.72 13.68 0.57 42.14 12.51 1.05 3.20 26.12 猪毛菜 根系 3.36×10−5 3.81×10−4 0.30 1.74 27.65 0.53 27.42 2.86 0.79 7.92 31.10 地上部分 3.46×10−5 7.26×10−4 0.64 0.86 25.09 0.55 19.97 2.54 0.47 3.80 46.72 狗尾草 根系 3.43×10−5 5.26×10−4 1.08 0.50 10.74 0.26 44.62 7.18 0.30 2.24 34.17 地上部分 2.22×10−5 4.30×10−4 1.91 0.18 4.98 0.13 48.01 6.96 0.08 0.99 38.68 艾草 根系 3.52×10−5 5.33×10−4 0.68 0.82 17.23 0.54 31.77 4.44 0.70 3.66 40.83 地上部分 3.16×10−5 2.72×10−4 0.02 3.45 41.42 0.76 11.16 0.34 1.38 15.64 25.84 五节芒 根系 3.43×10−5 6.36×10−4 0.82 0.66 17.21 0.43 31.79 6.20 0.50 3.11 40.09 地上部分 3.44×10−5 5.43×10−4 0.56 0.99 21.58 0.56 11.13 4.14 0.40 4.23 56.98 盐肤木 根系 3.38×10−5 5.06×10−4 0.35 1.55 32.03 0.95 4.33 0.17 0.77 6.87 53.34 地上部分 3.54×10−5 6.57×10−4 0.54 1.03 26.73 0.88 18.49 2.45 0.81 4.26 45.35 小飞蓬 根系 3.29×10−5 4.24×10−4 0.60 0.87 15.61 0.28 36.88 5.11 0.45 4.28 36.52 地上部分 3.80×10−5 1.82×10−4 2.69 0.22 14.92 0.29 13.56 2.51 0.41 1.12 66.97 儿童 野茼蒿 根系 9.79×10−3 1.66×10−2 19.77 0.79 18.58 0.38 40.4 5.72 0.50 4.05 29.58 地上部分 1.81×10−3 1.75×10−2 32.96 0.87 11.71 0.36 32.42 4.68 0.39 3.77 45.80 金银花 根系 1.94×10−3 2.85×10−2 25.39 1.21 24.82 0.70 26.50 4.90 1.66 4.42 35.79 地上部分 1.57×10−3 1.76×10−2 13.51 1.84 28.72 0.47 31.14 4.54 1.38 8.16 23.74 白茅 根系 1.56×10−3 2.33×10−2 33.04 0.75 15.54 0.54 43.18 11.67 0.54 3.45 24.33 地上部分 1.63×10−3 2.25×10−2 36.26 0.72 13.68 0.57 42.14 12.52 1.05 3.20 26.12 猪毛菜 根系 1.59×10−3 1.80×10−2 14.36 1.75 27.65 0.53 27.40 2.87 0.80 7.91 31.08 地上部分 1.63×10−3 3.43×10−2 30.15 0.86 25.10 0.54 19.98 2.53 0.46 3.80 46.73 狗尾草 根系 1.62×10−3 2.48×10−2 51.03 0.50 10.74 0.26 44.62 7.18 0.30 2.23 34.16 地上部分 1.05×10−3 2.03×10−2 90.09 0.18 4.98 0.13 48.01 6.96 0.08 0.99 38.67 艾草 根系 1.66×10−3 2.51×10−2 32.21 0.82 17.23 0.54 31.77 4.44 0.70 3.67 40.83 地上部分 1.49×10−3 1.29×10−2 1.06 3.46 41.43 0.74 11.19 0.35 1.40 15.61 25.81 五节芒 根系 1.62×10−3 3.00×10−2 38.51 0.67 17.21 0.43 31.78 6.21 0.50 3.12 40.08 地上部分 1.62×10−3 2.56×10−2 26.22 0.98 21.58 0.56 11.13 4.14 0.40 4.24 56.97 盐肤木 根系 1.59×10−3 2.39×10−2 16.48 1.53 32.02 0.96 4.34 0.17 0.77 6.86 53.35 地上部分 1.67×10−3 3.10×10−2 25.61 1.03 26.73 0.89 18.49 2.45 0.82 4.25 45.34 小飞蓬 根系 1.55×10−3 2.00×10−2 28.34 0.87 15.60 0.29 36.87 5.12 0.45 4.29 36.51 地上部分 1.79×10−3 8.58×10−2 126.96 0.22 14.92 0.29 13.56 2.51 0.41 1.12 66.97 -
[1] WAN Y, HUANG Q, WANG Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure[J]. Journal of hazardous materials,2020,384:121293. doi: 10.1016/j.jhazmat.2019.121293 [2] WU J, LONG J, LIU L, et al. Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in Southwest China[J]. International journal of environmental research and public health,2018,15(9):1838. doi: 10.3390/ijerph15091838 [3] JIN Y, YU S, TENG C, et al. Biosorption characteristic of Alcaligenes sp BAPb 1 for removal of lead (Ⅱ) from aqueous solution[J]. Biotech,2017,7(2):123. [4] EGHBAL N, NASRABADI T, KARBASSI A R, et al. Evaluating the potential of plants (leaves) in removal of toxic metals from urban soils :case study of a district in Tehran City[J]. Pollution,2019,5(2):387-394. [5] SONG B, ZENG G, GONG J, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment international,2017,105:43-55. doi: 10.1016/j.envint.2017.05.001 [6] PŁOCINICZAK T, CHODÓR M, PACWA-PŁOCINICZAK M, et al. Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants[J]. Chemosphere,2019,219:250-260. doi: 10.1016/j.chemosphere.2018.12.018 [7] SALAM M M A, KAIPIAINEN E, MOHSIN M, et al. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals[J]. Journal of Environmental Management, 2016, 183(Pt 3): 467-477. [8] TAUQEER H M, ALI S, RIZWAN M, et al. Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response[J]. Ecotoxicology and Environmental Safety,2016,126:138-146. doi: 10.1016/j.ecoenv.2015.12.031 [9] SULTANA R, ISLAM S M N, ZAMAN M W, et al. Phytotoxicity of lead and chromium on germination, seedling establishment and metal uptake by Kenaf and Mesta[J]. Pollution,2020,6(2):429-440. [10] van der ENT A, MAK R, de JONGE M D, et al. Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation[J]. Scientific Reports,2018,8(1):1-15. [11] WU L H, LIU Y J, ZHOU S B, et al. Sedum plumbizincicola X H Guo et S B Zhou ex L H Wu (Crassulaceae): a new species from Zhejiang Province, China[J]. Plant Systematics and Evolution,2013,299(3):487-498. doi: 10.1007/s00606-012-0738-x [12] SILVIA L, CHIARA S, ADRIANA C, et al. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective[J]. Frontiers in Plant Science,2015,6:80. [13] 周晓声, 娄厦, Larisa Dorzhievna Radnaeva, 等.植物对土壤重金属富集特性研究进展[J]. 生态毒理学报,2022,17(3):400-410.ZHOU X S, LOU S, RADNAEVA L, et al. Advances in heavy metal accumulation characteristics of plants in soil[J]. Asian Journal of Ecotoxicology,2022,17(3):400-410. [14] GAN Y, HUANG X, LI S, et al. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta[J]. Journal of cleaner production,2019,221:98-107. doi: 10.1016/j.jclepro.2019.02.157 [15] ESINGH S, EPARIHAR P, ESINGH R, et al. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and ionomics[J]. Frontiers in Plant Science,2016,6:1143-1143. [16] AFTON S E, CATRON B, CARUSO J A. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant[J]. Journal of Experimental Botany,2009,60(4):1289-1297. doi: 10.1093/jxb/erp003 [17] WANG Z, CHAI L, YANG Z. Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China[J]. Journal of environmental quality,2010,39(5):1616-1623. doi: 10.2134/jeq2010.0007 [18] HU B, JIA X, HU J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International journal of environmental research and public health,2017,14(9):1042. doi: 10.3390/ijerph14091042 [19] LIANG Y, YI X, DANG Z, et al.Luo H and Tang J. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China[J]. International journal of environmental research and public health,2017,14(12):1557. doi: 10.3390/ijerph14121557 [20] 刘浩志, 张菊, 贾润娜, 等. 南四湖表层沉积物中砷赋存特征及污染评价[J]. 环境工程技术学报, 2023,13(3):1031-1038.LIU H Z, ZHANG J, JIA R N, et al. Occurrence characteristics and pollution assessment of arsenic in surface sediments of Nansi Lake [J]. Chinese Journal of Environmental Engineering Technology, 2023,13(3):1031-1038. [21] RAFATI M, KHORASANI N, MOATTAR F, et al. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil[J]. International Journal of Environmental Research,2011,5(4):961-970. [22] National Research Council. Risk Assessment in the Federal Government: managing the process[M]. Washington, D.C.:National Academies Press, 1983. [23] US EPA. EPA/600/P-95/002 Fa exposure factors handbook[S]. Washington DC: US EPA, 1997. [24] PAPADAKIS E N, VRYZAS Z, KOTOPOULOU A, et al. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment[J]. Ecotoxicology and Environmental Safety,2015,116:1-9. doi: 10.1016/j.ecoenv.2015.02.033 [25] US EPA. US Environmental Protection Agency's integrated risk information system[S]. Washington DC: US EPA, 2011. [26] US EPA. Definitions and general principles for exposure assessment[S]// Guidelines for exposure assessment. Washington DC: US EPA, 1992. [27] CAN M F, YLMAZ A B, YANAR A, et al. Assessment of accumulation and potential health risk of Cr, Mn, Fe, Cu and Zn in Fish from North-Eastern Mediterranean Sea[J]. Pollution,2020,6(3):597-610. [28] KAVCAR P, SOFUOGLU A, SOFUOGLU S C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway[J]. Int J Hyg Environ Health,2009,212(2):216-27. doi: 10.1016/j.ijheh.2008.05.002 [29] AL-SALEH I, ABDULJABBAR M. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk[J]. International Journal of Hygiene and Environmental Health,2017,220(7):1168-1178. doi: 10.1016/j.ijheh.2017.07.007 [30] 朱明澹, 李波, 刘国. 广元市周边废弃煤矿酸性矿井涌水水质分析及地下水健康风险评价[J]. 环境工程技术学报, 2023,13(3): 1097-1107 .ZHU M D, LI B, LIU G. Water quality analysis and groundwater health risk assessment of acid mine inrush in abandoned coal mines around Guangyuan City[J]. Chinese Journal of Environmental Engineering and Technology, 2023,13(3): 1097-1107. [31] 张浩, 王洋, 王辉, 等. 某废铅蓄电池炼铅遗留场地土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报, 2023,13(2): 769-777 .ZHANG H, WANG Y, WANG H, et al. Heavy metal pollution characteristics and health risk assessment of soil in a lead smelting site of waste lead storage battery[J]. Chinese Journal of Environmental Engineering and Technology, 2023,13(2): 769-777. [32] 陈景辉, 郭毅, 杨博, 等.省会城市土壤重金属污染水平与健康风险评价[J]. 生态环境学报,2022,31(10):2058-2069.CHEN J H, GUO Y, YANG B, et al. Pollution level of heavy metals in soil and health risk assessment in provincial capital cities of China[J]. Ecology and Environment Sciences,2022,31(10):2058-2069. [33] 马建华, 姜玉玲, 王洋洋, 等.豫境黄淮海平原土壤重金属背景值研究[J]. 环境科学学报,2022,42(12):241-250.MA J H, JIANG Y L, WANG Y Y, et al. Background values of heavy metals in soils of the Huanghuaihai Plain in Henan Province, China[J]. Acta Scientiae Circumstantiae,2022,42(12):241-250. [34] JIANG Y, JIANG S, LI Z, et al. Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L. ) cultivars[J]. Ecological Engineering,2019,129:38-44. doi: 10.1016/j.ecoleng.2019.01.009 [35] STOLTZ E, GREGER M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings[J]. Environmental and Experimental Botany,2002,47(3):271-280. doi: 10.1016/S0098-8472(02)00002-3 [36] WANG X, MA L Q, RATHINASABAPATHI B, et al. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata[J]. Environmental science & technology,2011,45(22):9719-9725. [37] LIU W, ZHOU Q, ZHANG Z, et al. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars[J]. Journal of Agricultural and Food Chemistry,2011,59:8324-8330. doi: 10.1021/jf201454w [38] SHAO T, PAN L, CHEN Z, et al. Content of heavy metal in the dust of leisure squares and its health risk assessment: a case study of Yanta District in Xi'an[J]. International Journal of Environmental Research and Public Health,2018,15(3):394. doi: 10.3390/ijerph15030394 [39] 郭松明, 余海波, 袁龙义.近20年我国重金属超积累植物种质资源筛选研究进展[J]. 生态毒理学报,2022,17(2):96-108.GUO S M, YU H B, YUAN L Y. Research progress of screening of germplasm resources of heavy metal hyperaccumulator in recent 20 years in China[J]. Asian Journal of Ecotoxicology,2022,17(2):96-108. [40] 王小玲, 高柱, 黄益宗, 等.铜胁迫对3种草本植物生长和重金属积累的影响[J]. 生态毒理学报,2014,9(4):699-706.WANG X L, GAO Z, HUANG Y Z, et al. Effects of copper stress on three kinds of herbaceous plants growth and heavy metal accumulation[J]. Asian Journal of Ecotoxicology,2014,9(4):699-706. [41] 蒋喜艳, 张述习, 尹西翔, 等.土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报,2021,16(6):150-160.JIANG X Y, ZHANG S X, YIN X X, et al. Research progress on heavy metals pollution and its control in soil-crop system[J]. Asian Journal of Ecotoxicology,2021,16(6):150-160. [42] 李韵雪, 闵远洋, 麦晋贤, 等.岗梅药材重金属生物可给性及其人体健康风险评价[J]. 生态毒理学报,2022,17(2):402-412.LI Y X, MIN Y Y, MAI J X, et al. Bioavailability determination and human health risk assessment of heavy metals in Ilex asprella medicinal materials[J]. Asian Journal of Ecotoxicology,2022,17(2):402-412. ⊕